Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated.
View Article and Find Full Text PDFSerratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity.
View Article and Find Full Text PDFIntestinal epithelial cells play important roles in the absorption of nutrients, secretion of electrolytes and food digestion. The function of these cells is strongly influenced by purinergic signalling activated by extracellular ATP (eATP) and other nucleotides. The activity of several ecto-enzymes determines the dynamic regulation of eATP.
View Article and Find Full Text PDFThe incorporation of sophisticated capabilities within microfluidic devices often requires the assembly of different layers in a correct arrangement. For example, when it is desired to include electrodes inside microfluidic channels or to create 3D microfluidic structures. However, the alignment between different substrates at the microscale requires expensive equipment not available for all research groups.
View Article and Find Full Text PDFGalectin-1 (GAL1), a β-galactoside-binding protein abundantly expressed in the tumor microenvironment, has emerged as a key mechanism of chemoresistance developed by different tumors. Although increased expression of GAL1 is a hallmark of hepatocellular carcinoma (HCC) progression, aggressiveness and metastasis, limited information is available on the role of this endogenous lectin in HCC resistance to chemotherapy. Moreover, the precise mechanisms underlying this effect are uncertain.
View Article and Find Full Text PDFα-hemolysin (HlyA) of binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (P) was assessed by stopped-flow light scattering.
View Article and Find Full Text PDFPlasma membrane Ca2+-ATPase (PMCA) transports Ca2+ by a reaction cycle including phosphorylated intermediates. Calmodulin binding to the C-terminal tail disrupts autoinhibitory interactions, activating the pump. To assess the conformational changes during the reaction cycle, we studied the structure of different PMCA states using a fluorescent probe, hydrophobic photolabeling, controlled proteolysis and Ca2+-ATPase activity.
View Article and Find Full Text PDFFlavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2020
Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate.
View Article and Find Full Text PDFThe plasma membrane Ca‑ATPase (PMCA) belongs to the family of P-type ATPases, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. The crystal structure of PMCA is currently lacking. Its abundance is approximately 0.
View Article and Find Full Text PDFMetabolic control analysis (MCA) is a promising approach in biochemistry aimed at understanding processes in a quantitative fashion. Here the contribution of enzymes and transporters to the control of a given pathway flux and metabolite concentrations is determined and expressed quantitatively by means of numerical coefficients. Metabolic flux can be influenced by a wide variety of modulators acting on one or more metabolic steps along the pathway.
View Article and Find Full Text PDFAluminum (Al) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets. The aim of this work was to study the molecular inhibitory mechanism of Al on Ca-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively).
View Article and Find Full Text PDFThe aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca(2+) with high apparent affinity.
View Article and Find Full Text PDF