Nature's masterfully synthesized biological materials take on greater relevance when viewed through the perspective of evolutionary abundance. The fact that beetles (order Coleoptera) account for a quarter of all extant lifeforms on Earth, makes them prime exponents of evolutionary success. In fact, their forewings are acknowledged as key traits to their radiative-adaptive success, which makes the beetle elytra a model structure for next-generation bioinspired synthetic materials.
View Article and Find Full Text PDFMechanical metamaterials inspired by the Japanese art of paper folding have gained considerable attention because of their potential to yield deployable and highly tunable assemblies. The inherent foldability of origami structures enlarges the material design space with remarkable properties such as auxeticity and high deformation recoverability and deployability, the latter being key in applications where spatial constraints are pivotal. This work integrates the results of the design, 3D direct laser writing fabrication, and in situ scanning electron microscopic mechanical characterization of microscale origami metamaterials, based on the multimodal assembly of Miura-Ori tubes.
View Article and Find Full Text PDF