Publications by authors named "Nicolaos B Karayiannis"

This paper describes the design and test results of a three-stage automated system for neonatal EEG seizure detection. Stage I of the system is the initial detection stage and identifies overlapping 5-second segments of suspected seizure activity in each EEG channel. In stage II, the detected segments from stage I are spatiotemporally clustered to produce multichannel candidate seizures.

View Article and Find Full Text PDF

This study was carried out during the second phase of the project "Video Technologies for Neonatal Seizures" and aimed at the development of a seizure detection system by training neural networks, using quantitative motion information extracted by motion tracking methods from short video segments of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion trajectory signals extracted from video recordings by robust motion trackers, based on block motion models. These motion trackers were developed to autonomously adjust to illumination and contrast changes that may occur during the video frame sequence.

View Article and Find Full Text PDF

This paper introduces a learning algorithm that can be used for training reformulated radial basis function neural networks (RBFNNs) capable of identifying uncertainty in data classification. This learning algorithm trains a special class of reformulated RBFNNs, known as cosine RBFNNs, by updating selected adjustable parameters to minimize the class-conditional variances at the outputs of their radial basis functions (RBFs). The experiments verify that quantum neural networks (QNNs) and cosine RBFNNs trained by the proposed learning algorithm are capable of identifying uncertainty in data classification, a property that is not shared by cosine RBFNNs trained by the original learning algorithm and conventional feed-forward neural networks (FFNNs).

View Article and Find Full Text PDF

Purpose: This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements.

Methods: The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities.

View Article and Find Full Text PDF

Objective: This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures.

Methods: The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities.

View Article and Find Full Text PDF

This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks.

View Article and Find Full Text PDF

This paper proposes a framework for training feedforward neural network models capable of handling class overlap and imbalance by minimizing an error function that compensates for such imperfections of the training set. A special case of the proposed error function can be used for training variance-controlled neural networks (VCNNs), which are developed to handle class overlap by minimizing an error function involving the class-specific variance (CSV) computed at their outputs. Another special case of the proposed error function can be used for training class-balancing neural networks (CBNNs), which are developed to handle class imbalance by relying on class-specific correction (CSC).

View Article and Find Full Text PDF

This paper presents the development of regularized optical flow computation methods and an evaluation of their performance in the extraction of quantitative motion information from video recordings of neonatal seizures. A general formulation of optical flow computation is presented and a mathematical framework for the development of practical tools for computing optical flow is outlined. In addition, this paper proposes an alternative formulation of the optical flow problem that relies on a discrete approximation of a family of quadratic functionals.

View Article and Find Full Text PDF

This paper introduces a methodology for the development of robust motion trackers for video based on block motion models. According to this methodology, the motion of a site between two successive frames is estimated by minimizing an error function defined in terms of the intensities at these frames. The proposed methodology is used to develop robust motion trackers that rely on fractional block motion models.

View Article and Find Full Text PDF

Purpose: The main objective of this research is the development of automated video processing and analysis procedures aimed at the recognition and characterization of the types of neonatal seizures. The long-term goal of this research is the integration of these computational procedures into the development of a stand-alone automated system that could be used as a supplement in the neonatal intensive care unit (NICU) to provide 24-h per day noninvasive monitoring of infants at risk for seizures.

Methods: We developed and evaluated a variety of computational tools and procedures that may be used to carry out the three essential tasks involved in the development of a seizure recognition and characterization system: the extraction of quantitative motion information from video recordings of neonatal seizures in the form of motion-strength and motor-activity signals, the selection of quantitative features that convey some unique behavioral characteristics of neonatal seizures, and the training of artificial neural networks to distinguish neonatal seizures from random infant behaviors and to differentiate between myoclonic and focal clonic seizures.

View Article and Find Full Text PDF

This paper presents an approach for improving the accuracy and reliability of motion tracking methods developed for video based on block motion models. This approach estimates the displacement of a block of pixels between two successive frames by minimizing an error function defined in terms of the pixel intensities at these frames. The minimization problem is made analytically tractable by approximating the error function using a second-order Taylor expansion.

View Article and Find Full Text PDF

This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching.

View Article and Find Full Text PDF

This paper presents the development of soft clustering and learning vector quantization (LVQ) algorithms that rely on a weighted norm to measure the distance between the feature vectors and their prototypes. The development of LVQ and clustering algorithms is based on the minimization of a reformulation function under the constraint that the generalized mean of the norm weights be constant. According to the proposed formulation, the norm weights can be computed from the data in an iterative fashion together with the prototypes.

View Article and Find Full Text PDF