Publications by authors named "Nicolanti F"

Article Synopsis
  • * New electron interaction models for nitrogen, oxygen, and carbon dioxide have been validated up to 10 MeV, which is important given carbon dioxide's role as a greenhouse gas.
  • * Results show that the models align well with existing literature, confirming their reliability and enabling further research into the effects of ionization on atmospheric chemistry and climate impacts.
View Article and Find Full Text PDF
Article Synopsis
  • Gas-phase ion chemistry plays a significant role in atmospheric processes, particularly in forming cloud condensation nuclei affected by cosmic rays in the upper troposphere-stratosphere.
  • This study focuses on an exothermic ionic reaction that produces hydroperoxyl radical (HO) and protonated formaldehyde from methanol radical cation and molecular oxygen, highlighting methanol's importance in atmospheric composition.
  • Experimental findings using synchrotron radiation demonstrate a rapid hydrogen transfer from methanol to oxygen, supported by computational analysis, and suggests that these ion-driven reactions are crucial for understanding atmospheric chemistry.
View Article and Find Full Text PDF

Purpose: In radioguided surgery (RGS), radiopharmaceuticals are used to generate preoperative roadmaps (e.g., PET/CT) and to facilitate intraoperative tracing of tracer avid lesions.

View Article and Find Full Text PDF

One of today's main challenges in molecular radiation therapy is to assess an individual dosimetry that allows treatment to be tailored to the specific patient, in accordance with the current paradigm of 'personalized medicine'. The evaluation of the absorbed doses for tumor and organs at risk in molecular radiotherapy is typically based on MIRD schema acquiring few experimental points for the assessement of biokinetic parameters. WIDMApp, the wearable individual dose monitoring apparatus, is an innovative approach for internal dosimetry based on a wearable radiation detecting system for individual biokinetics sampling, a Monte Carlo simulation for particle interaction, and an unfolding algorithm for data analysis and integrated activity determination at organ level.

View Article and Find Full Text PDF

The impact of cosmic rays' energetic subatomic particles on climate and global warming is still controversial and under debate. Cosmic rays produce ions that can trigger fast reactions affecting chemical networks in the troposphere and stratosphere especially when a large amount of relevant trace gases such as carbon dioxide, methane, sulfur dioxide and water are injected by volcanic eruptions. This work focuses on synchrotron experiments and an theoretical study of the ion chemistry of carbon dioxide and nitrous oxide radical cations reacting with water.

View Article and Find Full Text PDF

Cosmic rays have the potential to significantly affect the atmospheric composition by increasing the rate and changing the types of chemical reactions through ion production. The amount and states of ionization, and the spatial distribution of ions produced are still open questions for atmospheric models. To precisely estimate these quantities, it is necessary to simulate particle-molecule interactions, down to very low energies.

View Article and Find Full Text PDF

Purpose: A high level of personalization in Molecular Radiotherapy (MRT) could bring advantages in terms of treatment effectiveness and toxicity reduction. Individual organ-level dosimetry is crucial to describe the radiopharmaceutical biodistribution expressed by the patient, to estimate absorbed doses to normal organs and target tissue(s). This paper presents a proof-of-concept Monte Carlo simulation study of "WIDMApp" (Wearable Individual Dose Monitoring Apparatus), a multi-channel radiation detector and data processing system for in vivo patient measurement and collection of radiopharmaceutical biokinetic data (i.

View Article and Find Full Text PDF