Translation across species of immunoassay results is often challenging due to the lack of cross-species reactivity of antibodies. In order to investigate the biology of insulin and IGF1 receptors, we generated new versatile monoclonal assay antibodies using the extracellular domain of the insulin/IGF1 hybrid receptor as the bait protein in the Adimab yeast antibody discovery platform and as the antigen in a rabbit monoclonal antibody platform. The resulting antibody clones were screened for receptor specificity as well as cross-species reactivity to both tissue and cell line derived samples.
View Article and Find Full Text PDFSeveral fatty acids and lysolipids have been shown earlier to increase the permeability of membranes of artificial liposomes, thereby increasing the release of drugs such as doxorubicin (Dox) contained within them. Free fatty acids can also inhibit cancer cell growth in vitro, and it has been suggested that this inhibition results from increased membrane permeability. Clearly, therefore, increased membrane permeability could be used in the design of liposomes for targeted drug delivery.
View Article and Find Full Text PDFIdentification of the cell surface proteome and comparison of their expression between cells with different phenotypic characteristics is crucial to the discovery of novel cancer drug targets as well as elucidating the basic biologic processes of cancer. However, cell surface proteomics are complex and technologically challenging, and no ideal method is currently available. Here, we describe a strategy that allows scanning of the entire cell surface and identification of molecules that exhibit altered expression between two cell types.
View Article and Find Full Text PDFA method is described for the identification of the antigen recognised by an scFv isolated from an antibody phage display library using selection against a complex mixture of proteins (e.g. intact cells, purified cell surface membranes, and tissue sections).
View Article and Find Full Text PDFClinical trials using monoclonal antibodies (mAb) against cell-surface markers have yielded encouraging therapeutic results in several cancer types. Generally, however, anticancer antibodies are only efficient against a subpopulation of cancers, and there is a strong need for identification of novel targets and human antibodies against them. We have isolated single-chain human mAbs from a large naïve antibody phage display library by panning on a single-cell suspension of freshly isolated live cancer cells from a human breast cancer specimen, and these antibodies were shown to specifically recognize cancer-associated cell-surface proteins.
View Article and Find Full Text PDF