Publications by authors named "Nicolai Waniek"

Introduction: Recent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.

View Article and Find Full Text PDF

Although hippocampal grid cells are thought to be crucial for spatial navigation, their computational purpose remains disputed. Recently, they were proposed to represent spatial transitions and convey this knowledge downstream to place cells. However, a single scale of transitions is insufficient to plan long goal-directed sequences in behaviorally acceptable time.

View Article and Find Full Text PDF

Objective: The objective of this work is to present gumpy, a new free and open source Python toolbox designed for hybrid brain-computer interface (BCI).

Approach: Gumpy provides state-of-the-art algorithms and includes a rich selection of signal processing methods that have been employed by the BCI community over the last 20 years. In addition, a wide range of classification methods that span from classical machine learning algorithms to deep neural network models are provided.

View Article and Find Full Text PDF

Grid cells of the rodent entorhinal cortex are essential for spatial navigation. Although their function is commonly believed to be either path integration or localization, the origin or purpose of their hexagonal firing fields remains disputed. Here they are proposed to arise as an optimal encoding of transitions in sequences.

View Article and Find Full Text PDF

After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time.

View Article and Find Full Text PDF