Publications by authors named "Nicolai Ree"

Determining the p values of various C-H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C-H p values, which is used to generate a training dataset for a machine learning (ML) model.

View Article and Find Full Text PDF

We present a quantum chemistry (QM)-based method that computes the relative energies of intermediates in the Heck reaction that relate to the regioselective reaction outcome: branched (α), linear (β), or a mix of the two. The calculations are done for two different reaction pathways (neutral and cationic) and are based on SCAN-3c single-point calculations on GFN2-xTB geometries that, in turn, derive from a GFNFF-xTB conformational search. The method is completely automated and is sufficiently efficient to allow for the calculation of thousands of reaction outcomes.

View Article and Find Full Text PDF

Herein, we present an investigation of the excited state dynamics of the dihydroazulene photoswitch and its photoinduced reaction to vinylheptafulvene. The focus is on how the introduction of a benzannulated ring in different sites of the structure can modify the excited state topology and thus the kinetics of the ring opening reaction of DHA by alteration of the excited state conjugation of the system. The dynamics of the systems is obtained utilizing density functional theory calculations in different solvents coupled with unimolecular reaction theory.

View Article and Find Full Text PDF

We present a computational methodology for the screening of a chemical space of 10 substituted norbornadiene molecules for promising kinetically stable molecular solar thermal (MOST) energy storage systems with high energy densities that absorb in the visible part of the solar spectrum. We use semiempirical tight-binding methods to construct a dataset of nearly 34 000 molecules and train graph convolutional networks to predict energy densities, kinetic stability, and absorption spectra and then use the models together with a genetic algorithm to search the chemical space for promising MOST energy storage systems. We identify 15 kinetically stable molecules, five of which have energy densities greater than 0.

View Article and Find Full Text PDF

We present RegioSQM20, a new version of RegioSQM (Chem Sci 9:660, 2018), which predicts the regioselectivities of electrophilic aromatic substitution (EAS) reactions from the calculation of proton affinities. The following improvements have been made: The open source semiempirical tight binding program xtb is used instead of the closed source MOPAC program. Any low energy tautomeric forms of the input molecule are identified and regioselectivity predictions are made for each form.

View Article and Find Full Text PDF

Molecular photoswitches based on the norbornadiene-quadricylane (NBD-QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD-QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution.

View Article and Find Full Text PDF

The introduction of various photochromic units into the same molecule is an attractive approach for the development of novel molecular solar thermal (MOST) energy storage systems. Here, we present the synthesis and characterisation of a series of covalently linked norbornadiene/dihydroazulene (NBD/DHA) conjugates, using the Sonogashira coupling as the key synthetic step. Generation of the fully photoisomerized quadricyclane/vinylheptafulvene (QC/VHF) isomer was found to depend strongly on how the two units are connected - by linear conjugation (a para-phenylene bridge) or cross-conjugation (a meta-phenylene bridge) or by linking to the five- or seven-membered ring of DHA - as well as on the electronic character of another substituent group on the NBD unit.

View Article and Find Full Text PDF

Creating input files to atomistic simulations and quantum chemical calculations in the CP2K software package can be a challenge. Here, we present a new graphical user interface to reduce the complexity of the work needed to run a CP2K calculation as well as the risk for making mistakes. The program is called CP2K Editor, and it provides a user-friendly interface for both new and experienced users.

View Article and Find Full Text PDF

Electrochemical processes drive many chemical and biochemical reactions. Theoretical methods to accurately predict redox potentials are therefore crucial for understanding these reactions and designing new chemical species with desired properties. We have investigated a theoretical methodology using electronic structure methods based on density functional theory and continuum solvation models.

View Article and Find Full Text PDF

Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation.

View Article and Find Full Text PDF

Former work has improved the energy storage capacity of the dihydroazulene/vinylheptafulvene photo/thermoswitch by substitution with NH and NO in vacuum. This work extends the former by investigating the solvent effects systematically using cyclohexane, toluene, dichloromethane, ethanol, and acetonitrile and comparing them with the inclusion of vacuum calculations. The investigation includes more than 8000 calculations using density functional theory for comparison of energy storage capacities, activation energies for the thermal conversion of vinylheptafulvene to dihydroazulene, and UV-Vis absorption spectra.

View Article and Find Full Text PDF