Fluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-phase DNA synthesis.
View Article and Find Full Text PDFTargeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding.
View Article and Find Full Text PDFFour different double-headed nucleosides each combining two thymine nucleobases with different linkers were synthesised. The 5-position of 2'-deoxyuridine was connected to the N1-position of a thymine through either m- or p-disubstituted phenyl or phenylacetylene linkers by the use of Suzuki or Sonogashira couplings. When introduced into oligonucleotides, the thermal stability of dsDNA and DNA : RNA duplexes were determined and structural information was obtained from CD- and fluorescence spectroscopy.
View Article and Find Full Text PDFThree 5-modified 2'-deoxyuridine nucleosides were synthesized and incorporated into oligonucleotides and compared with the previously published 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W. The introduction of an aminomethyl group on the phenyl group led to monomer X, which was found to thermally stabilize a 9-mer DNA:RNA duplex, presumably through the partial neutralization of the negative charge of the backbone. By also taking advantage of the stacking interactions in the major groove of two or more of the monomer X, an extremely high thermal stability was obtained.
View Article and Find Full Text PDFThe development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-L-LNA are two interesting examples thereof. Oligonucleotides modified with these units display greatly increased affinity toward nucleic acid targets, improved binding specificity, and enhanced enzymatic stability relative to unmodified strands.
View Article and Find Full Text PDFThe development of synthetic agents that recognize double-stranded DNA (dsDNA) is a long-standing goal that is inspired by the promise for tools that detect, regulate, and modify genes. Progress has been made with triplex-forming oligonucleotides, peptide nucleic acids, and polyamides, but substantial efforts are currently devoted to the development of alternative strategies that overcome the limitations observed with the classic approaches. In 2005, we introduced Invader locked nucleic acids (LNAs), i.
View Article and Find Full Text PDF5-(1-Phenyl-1,2,3-triazol-4-yl)-2'-deoxycytidine was synthesized from a modified CuAAC protocol and incorporated into mixed pyrimidine oligonucleotide sequences together with the corresponding 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine. With consecutive incorporations of the two modified nucleosides, improved duplex formation with a complementary RNA and improved triplex formation with a complementary DNA duplex were observed. The improvement is due to π-π stacking of the phenyl-triazole moieties in the major groove.
View Article and Find Full Text PDFThree pyrimidine nucleosides with differently substituted phenyltriazoles attached to the 5-position were prepared by Cu(I)-assisted azide-alkyne cycloadditions (CuAAC) and incorporated into oligonucleotides. Efficient π-π-stacking between two or more phenyltriazoles in the major groove was found to increase the thermal stability of a DNA:RNA duplex significantly. The best stacking, and most stable duplex, was obtained by a sulfonamide substituted derivative.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
A synthetic strategy towards new aromatic nucleoside derivatives introducing additional aromatic functionality placed in the major groove of a modified DNA duplex is presented. The functionalities are introduced using Click Chemistry conditions and found to increase the overall duplex stability.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
Two series of thymidine derivatives with additional nucleobases/aromatics attached to either the 5'(S)-C- or the 5-position were prepared by epoxide opening and/or "click chemistry" cycloaddition protocols and introduced into DNA duplexes. Interstrand base-base communication in the minor groove and intrastrand stacking interactions in the major groove were detected.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2008
The synthesis of two pyrene-functionalized 2'-amino-alpha-L-LNA adenine building blocks is outlined and initial results from thermal denaturation studies are presented.
View Article and Find Full Text PDFA general protocol for converting alkyl and aryl halides into azides and for converting these in situ into 1,4-disubstituted triazoles was applied with 5-ethynyl-2'-deoxyuridine. This afforded three modified 2'-deoxyuridine analogues with either unsubstituted or 1-phenyl-/1-benzyl-substituted triazoles in their 5-positions. Modelling demonstrates coplanarity of the two heteroaromatic rings, and UV spectroscopy showed the uracil pK(a) values to be almost unchanged.
View Article and Find Full Text PDFThe synthesis of branched and conformationally restricted analogs of the anticancer nucleosides 3'-C-ethynyluridine (EUrd) and 3'-C-ethynylcytidine (ECyd) is presented. Molecular modeling and (1)H NMR coupling constant analysis revealed that the furanose rings of all analogs except the LNA analog are conformationally biased towards South conformation, and are thus mimicking the structure of ECyd. All target nucleosides were devoid of anti-HIV or anticancer activity.
View Article and Find Full Text PDF