Temporal synchrony between facial motion and acoustic modulations is a hallmark feature of audiovisual speech. The moving face and mouth during natural speech is known to be correlated with low-frequency acoustic envelope fluctuations (below 10 Hz), but the precise rates at which envelope information is synchronized with motion in different parts of the face are less clear. Here, we used regularized canonical correlation analysis (rCCA) to learn speech envelope filters whose outputs correlate with motion in different parts of the speakers face.
View Article and Find Full Text PDF