Energy and its dissipation are fundamental to all living systems, including cells. Insufficient abundance of energy carriers -as caused by the additional burden of artificial genetic circuits- shifts a cell's priority to survival, also impairing the functionality of the genetic circuit. Moreover, recent works have shown the importance of energy expenditure in information transmission.
View Article and Find Full Text PDFEnergy and its dissipation are fundamental to all living systems, including cells. Insufficient abundance of energy carriers─as caused by the additional burden of artificial genetic circuits─shifts a cell's priority to survival, also impairing the functionality of the genetic circuit. Moreover, recent works have shown the importance of energy expenditure in information transmission.
View Article and Find Full Text PDFGenetic design automation (GDA) tools hold promise to speed-up circuit design in synthetic biology. Their widespread adoption is hampered by their limited predictive power, resulting in frequent deviations between the in silico and in vivo performance of a genetic circuit. Context effects, i.
View Article and Find Full Text PDFGenetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation.
View Article and Find Full Text PDF