Publications by authors named "Nicolae-Viorel Buchete"

Classifying reliably active and inactive molecular conformations of wildtype (WT) and mutated oncogenic proteins is a key, ongoing challenge in molecular cancer studies. Here, we probe the GTP-bound K-Ras4B conformational dynamics using long-time atomistic molecular dynamics (MD) simulations. We extract and analyze the detailed underlying free energy landscape of WT K-Ras4B.

View Article and Find Full Text PDF

The self-assembling propensity of amyloid peptides such as diphenylalanine (FF) allows them to form ordered, nanoscale structures, with biocompatible properties important for biomedical applications. Moreover, piezoelectric properties allow FF molecules and their aggregates (e.g.

View Article and Find Full Text PDF

Molecular dynamics (MD) studies of biomolecules require the ability to simulate complex biochemical systems with an increasingly larger number of particles and for longer time scales, a problem that cannot be overcome by computational hardware advances alone. A main problem springs from the intrinsically high-dimensional and complex nature of the underlying free energy landscape of most systems, and from the necessity to sample accurately such landscapes for identifying kinetic and thermodynamic states in the configurations space, and for accurate calculations of both free energy differences and of the corresponding transition rates between states. Here, we review and present applications of two increasingly popular methods that allow long-time MD simulations of biomolecular systems that can open a broad spectrum of new studies.

View Article and Find Full Text PDF

Background: Kinases are a family of enzymes that catalyze the transfer of the ɤ-phosphate group from ATP to a protein's residue. Malfunctioning kinases are involved in many health problems such as cardiovascular diseases, diabetes, and cancer. Kinases transitions between multiple conformations of inactive to active forms attracted considerable interest.

View Article and Find Full Text PDF

Peptide cyclization can improve stability, conformational constraint, and compactness. However, apart from beta-turn structures, which are well incorporated into cyclic peptides (CPs), many primary peptide structures and functions are markedly altered by cyclization. Accordingly, to mimic linear peptide interfaces with cyclic peptides, it can be beneficial to screen combinatorial cyclic peptide libraries.

View Article and Find Full Text PDF

Nanoscale fibrils formed by amyloid peptides have a polymorphic character, adopting several types of molecular structures in similar growth conditions. As shown by experimental (e.g.

View Article and Find Full Text PDF

Recent molecular modeling methods using Markovian descriptions of conformational states of biomolecular systems have led to powerful analysis frameworks that can accurately describe their complex dynamical behavior. In conjunction with enhanced sampling methods, such as replica exchange molecular dynamics (REMD), these frameworks allow the systematic and accurate extraction of transition probabilities between the corresponding states, in the case of Markov state models, and of statistically-optimized transition rates, in the case of the corresponding coarse master equations. However, applying automatically such methods to large molecular dynamics (MD) simulations, with explicit water molecules, remains limited both by the initial ability to identify good candidates for the underlying Markovian states and by the necessity to do so using good collective variables as reaction coordinates that allow the correct counting of inter-state transitions at various lag times.

View Article and Find Full Text PDF

Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-amino-acid peptide, co-secreted with insulin, and widely found in fibril form in type-2 diabetes patients. By using all-atom molecular dynamics simulations, we study hIAPP fibril segments (i.e.

View Article and Find Full Text PDF

We show how accurate rates of formation and dissociation of peptide dimers can be calculated using direct transition counting (DTC) from replica-exchange molecular dynamics (REMD) simulations. First, continuous trajectories corresponding to system replicas evolving at different temperatures are used to assign conformational states. Second, we analyze the entire REMD data to calculate the corresponding rates at each temperature directly from the number of transition counts.

View Article and Find Full Text PDF

Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.

View Article and Find Full Text PDF

RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear.

View Article and Find Full Text PDF

We characterize the kinetics of dimer formation of the short amyloid microcrystal-forming tetrapeptides NNQQ by constructing coarse master equations for the conformational dynamics of the system, using temperature replica-exchange molecular dynamics (REMD) simulations. We minimize the effects of Kramers-type recrossings by assigning conformational states based on their sequential time evolution. Transition rates are further estimated from short-time state propagators by maximizing the likelihood that the extracted rates agree with the observed atomistic trajectories without any a priori assumptions about their temperature dependence.

View Article and Find Full Text PDF

RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif.

View Article and Find Full Text PDF

The detailed, atomistic-level understanding of molecular signaling along the tumor-suppressive Hippo signaling pathway that controls tissue homeostasis by balancing cell proliferation and death through apoptosis is a promising avenue for the discovery of novel anticancer drug targets. The activation of kinases such as Mammalian STE20-Like Protein Kinases 1 and 2 (MST1 and MST2)-modulated through both homo- and heterodimerization (e.g.

View Article and Find Full Text PDF

Cadmium (Cd) has several industrial applications, and is found in tobacco products, a notable source of human exposure. Vascular endothelial cells are key targets of Cd toxicity. Here, we aim to quantify the alteration to vascular branching pattern following Cd exposure in the chick extra-embryonic membrane (EEM) using fractal analysis, and explore molecular cues to angiogenesis such as VEGF-A and VEGF-R2 expression following Cd treatment.

View Article and Find Full Text PDF

Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment.

View Article and Find Full Text PDF

Fibrous peptide networks, such as the structural framework of self-assembled fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) nanofibrils, have mechanical properties that could successfully mimic natural tissues, making them promising materials for tissue engineering scaffolds. These nanomaterials have been determined to exhibit shear piezoelectricity using piezoresponse force microscopy, as previously reported for FF nanotubes. Structural analyses of Fmoc-FF nanofibrils suggest that the observed piezoelectric response may result from the noncentrosymmetric nature of an underlying β-sheet topology.

View Article and Find Full Text PDF

Due to their homophilic and heterophilic binding properties, cell adhesion molecules (CAMs) such as integrin, cadherin and the immunoglobulin superfamily CAMs are of primary importance in cell-cell and cell-substrate interactions, signalling pathways and other crucial biological processes. We study the molecular structures and conformational dynamics of the two fibronectin type III (Fn-III) extracellular domains of the Aplysia californica CAM (apCAM) protein, by constructing and probing an atomically-detailed structural model based on apCAM's homology with other CAMs. The stability and dynamic properties of the Fn-III domains, individually and in tandem, are probed and analysed using all-atom explicit-solvent molecular dynamics (MD) simulations and normal mode analysis of their corresponding elastic network models.

View Article and Find Full Text PDF

The molecular pathogenesis of Alzheimer's disease (AD) is complex and sparsely understood. The relationship between AD's amyloid β (Aβ) peptides and neuronal membranes is central to Aβ's cytotoxicity and is directly modulated by the composition of the lipid headgroups. Molecular studies of the insertion of model Aβ40 protofilaments in lipid bilayers revealed strong interactions that affect the structural integrity of both the membranes and the ordered amyloid aggregates.

View Article and Find Full Text PDF

Aromatic peptides including diphenylalanine (FF) have the capacity to self-assemble into ordered, biocompatible nanostructures with piezoelectric properties relevant to a variety of biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we examine the response of FF monomers to the application of a constant external electric field over a range of intensities.

View Article and Find Full Text PDF

Protein phosphorylation is one of the most common post-translational modifications in cell regulatory mechanisms. Dimerization plays also a crucial role in the kinase activity of many kinases, including RAF, CDK2 (cyclin-dependent kinase 2) and EGFR (epidermal growth factor receptor), with heterodimers often being the most active forms. However, the structural and mechanistic details of how phosphorylation affects the activity of homo- and hetero-dimers are largely unknown.

View Article and Find Full Text PDF

We study two-state protein folding in the framework of a toy model of protein dynamics. This model has an important advantage: it allows for an analytical solution for the sum of folding and unfolding rate constants [A. M.

View Article and Find Full Text PDF