The development of novel antibiotics is mandatory to curb the growing antibiotic resistance problem resulting in difficult-to-treat bacterial infections. Here, we have determined the spectrum of activity of cystobactamids and chelocardins, two novel and promising classes of molecules with different modes of action. A panel of 297 clinically relevant Gram-negative and Gram-positive isolates with different antibiotic susceptibility profiles, going from wild type to multi- or even extremely drug resistant (MDR, XDR) and including carbapenem-resistant isolates, were tested using broth microdilution assays to determine the minimal inhibitory concentrations (MICs), MIC50s and MIC90s of two cystobactamids derivatives (CN-861-2 and CN-DM-861) and two chelocardin derivatives (CHD and CDCHD).
View Article and Find Full Text PDFBackground: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored.
View Article and Find Full Text PDFRhamnolipids (RLs) are secondary metabolites naturally produced by bacteria of the genera and Burkholderia with biosurfactant properties. A specific interest raised from their potential as biocontrol agents for crop culture protection in regard to direct antifungal and elicitor activities. As for other amphiphilic compounds, a direct interaction with membrane lipids has been suggested as the key feature for the perception and subsequent activity of RLs.
View Article and Find Full Text PDFBiomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2022
Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes.
View Article and Find Full Text PDFDespite the remarkable similarity in amino acid composition, many anticancer peptides (ACPs) display significant differences in terms of activity. This strongly suggests that particular relative dispositions of amino acids (motifs) play a role in the interaction with their biological target, which is often the cell membrane. To better verify this hypothesis, we intentionally modify HB43, an ACP active against a wide variety of cancers.
View Article and Find Full Text PDFSesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments.
View Article and Find Full Text PDFTranscription factors must scan genomic DNA, recognize the cognate sequence of their control element(s), and bind tightly to them. The DNA recognition process is primarily carried out by their DNA binding domains (DBD), which interact with the cognate site with high affinity and more weakly with any other DNA sequence. DBDs are generally thought to bind to their cognate DNA without changing conformation (lock-and-key).
View Article and Find Full Text PDFMost biomolecular processes involve proteins shuttling among different conformational states, particularly from highly populated ground states to the lowly populated excited states that determine the interconversion rates and biological function, and which are invisible to most structural biology techniques. These structural transitions are rare and relatively fast: happen in the millisecond-microsecond timescale (ms-μs). NMR spectroscopy can access these timescales via relaxation dispersion techniques (RD-NMR).
View Article and Find Full Text PDFAs Cecropin XJ, Cecropin A from Bombyx mori is one of the very few antimicrobial peptides having shown activity against esophageal cancer cells. It displays remarkable sequence-similarity to Cecropin XJ but slightly enhanced activity. In this work we show by NMR that both peptides are unstructured in solution but get structured in the presence of DPC micelles, mimicking the surface of biological membranes.
View Article and Find Full Text PDFHB43 (FAKLLAKLAKKLL) is a synthetic peptide active against cell lines derived from breast, colon, melanoma, lung, prostate, and cervical cancers. Despite its remarkable spectrum of activity, the mechanism of action at the molecular level has never been investigated, preventing further optimization of its selectivity. The alternation of charged and hydrophobic residues suggests amphipathicity, but the formation of alpha-helical structure seems discouraged by its short length and the large number of positively charged residues.
View Article and Find Full Text PDFBombinins are a wide family of antimicrobial peptides from skin. By sequence clustering, we highlighted at least three families named A, B, and H, which might exert antibacterial activity by different modes of action. In this work, we study bombinin-like peptide 3 (BLP-3) as a nonhemolytic representative of the quite unexplored class A due to its appealing activity toward WHO-priority-list bacteria such as , , and .
View Article and Find Full Text PDFEsophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi.
View Article and Find Full Text PDFK11 is a synthetic peptide originating from the introduction of a lysine residue in position 11 within the sequence of a rationally designed antibacterial scaffold. Despite its remarkable antibacterial properties towards many ESKAPE bacteria and its optimal therapeutic index (320), a detailed description of its mechanism of action is missing. As most antimicrobial peptides act by destabilizing the membranes of the target organisms, we investigated the interaction of K11 with biomimetic membranes of various phospholipid compositions by liquid and solid-state NMR.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are part of the innate immune response to pathogens in all of the kingdoms of life. They have received significant attention because of their extraordinary variety of activities, in particular, as candidate drugs against the threat of super-bacteria. A systematic study of the relation between the sequence and the mechanism of action is urgently needed, given the thousands of sequences already in multiple web resources.
View Article and Find Full Text PDFWW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing.
View Article and Find Full Text PDFUnderstanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called "DFG-flip" of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an "in to out" movement resulting in a particular inactive conformation to which "type II" kinase inhibitors, such as the anti-cancer drug Imatinib, bind.
View Article and Find Full Text PDFPhosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear.
View Article and Find Full Text PDFCaffeine hetero-association with 3,5-di-O-caffeoylquinic acid, 3,4-di-O-caffeoylquinic acid and 4,5-di-O-caffeoylquinic acid in aqueous solution has been investigated by one-dimensional (1D) and two-dimensional (2D) high resolution H and C NMR spectroscopy. Self-association of the di-O-caffeoylquinic acid isomers has been studied as well. Caffeine-di-O-caffeoylquinic acid isomers association constants were measured.
View Article and Find Full Text PDFThe present work reports a thorough conformational analysis of iodinated contrast media: iomeprol, iopamidol (the world's most utilized contrast agent), and iopromide. Its main aim is the understanding of the complex structural features of these atropisomeric molecules, characterized by the presence of many conformers with hindered rotations, and of the role of atropisomerism in the physicochemical properties of their aqueous solutions. The problem was tackled by using an extensive analysis of (13)C NMR data on the solutions of whole molecules and of simple precursors in addition to FT-IR investigation and molecular simulations.
View Article and Find Full Text PDFChitlac is a biocompatible modified polysaccharide composed of a chitosan backbone to which lactitol moieties have been chemically inserted via a reductive N-alkylation reaction with lactose. The physical-chemical and biological properties of Chitlac that have been already reported in the literature suggest a high accessibility of terminal galactose in the lactitol side chain. This finding may account for its biocompatibility which makes it extremely interesting for the production of biomaterials.
View Article and Find Full Text PDFIn this work, we show how an extensive and fast quantification of the main components in green coffee oil can be achieved by NMR, with minimal sample manipulation and use of organic solvents. The approach is based on the integration of characteristic NMR signals, selected because of their similar relaxation properties and because they fall in similar spectral regions, which minimizes offset effects. Quantification of glycerides, together with their fatty acid components (oleic, linoleic, linolenic and saturated) and minor species (caffeine, cafestol, kahweol and 16-O-methylcafestol), is achieved in less than 1h making use of (1)H and (13)C spectroscopy.
View Article and Find Full Text PDFThe present work aims at understanding the structural basis of the biological recognition of Tn antigen (GalNAc-α-O-L-Ser), a specific epitope expressed by tumor cells, and the role of its amino acidic moiety in the interaction with its receptor (the isolectin B4 extracted from Vicia villosa). An NMR structural characterization of the α and β anomers, based on J couplings and molecular modeling revealed a structure in very good agreement with data reported in literature for variants of the same molecules. In order to demonstrate the involvement of the amino acid in the ligand-receptor recognition, also GalNAc-α-O-D-Ser was studied; the change in the stereochemistry is in fact expected to impact on the interaction only in case the serine is part of the epitope.
View Article and Find Full Text PDFThe aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD.
View Article and Find Full Text PDF