Publications by authors named "Nicola Zanesi"

Non-small cell lung carcinoma (NSCLC) is leading cause of cancer-related deaths in the world. The Tumor Suppressor Candidate 3 (TUSC3) at chromosome 8p22 known to be frequently deleted in cancer is often found to be deleted in advanced stage of solid tumors. However, the role of TUSC3 still remains controversial in lung cancer and context-dependent in several cancers.

View Article and Find Full Text PDF

: Muscle wasting is a feature of the cachexia syndrome, which contributes significantly to the mortality of patients with cancer. We have previously demonstrated that miR-21 is secreted through extracellular vesicles (EV) by lung and pancreatic cancer cells and promotes JNK-dependent cell death through its binding to the TLR7 receptor in murine myoblasts. Here, we evaluate the ability of IMO-8503, a TLR7, 8, and 9 antagonist, to inhibit cancer-induced cachexia.

View Article and Find Full Text PDF

The World Health Organization has recently introduced molecular prognostic-diagnostic biomarkers in the classification of Central Nervous System (CNS) tumors. In order to characterize subclasses of tumors that cannot find a precise location in the current classification, and, or cannot be tested because of scant material, it is important to find new molecular biomarkers in tissue and, or biological fluid samples. In this study, we identified serum microRNAs that could serve as biomarkers for the diagnosis and prognosis of patients with tumors of glial origin.

View Article and Find Full Text PDF

H-RasV12 oncogene has been shown to promote autophagic cell death. Here, we provide evidence of a contextual role for H-RasV12 in cell death that is varied by its effects on miR-130a. In E1A-immortalized murine embryo fibroblasts, acute expression of H-RasV12 promoted apoptosis, but not autophagic cell death.

View Article and Find Full Text PDF

Mutated protein-coding genes drive the molecular pathogenesis of many diseases, including cancer. Specifically, mutated KRAS is a documented driver for malignant transformation, occurring early during the pathogenesis of cancers such as lung and pancreatic adenocarcinomas. Therapeutically, the indiscriminate targeting of wild-type and point-mutated transcripts represents an important limitation.

View Article and Find Full Text PDF

Breast cancer is the most common cancer in women worldwide. A new promising anti-cancer therapy involves the use of monoclonal antibodies specific for target tumor-associated antigens (TAAs). A TAA of interest for immunotherapy of Triple Negative Breast Cancer (TNBC) is nucleolin (NCL), a multifunctional protein, selectively expressed on the surface of cancer cells, which regulates the biogenesis of specific microRNAs (miRNAs) involved in tumor development and drug-resistance.

View Article and Find Full Text PDF

MicroRNAs (miRNA) are mostly downregulated in cancer. However, the mechanism underlying this phenomenon and the precise consequence in tumorigenesis remain obscure. Here we show that ERK suppresses pre-miRNA export from the nucleus through phosphorylation of exportin-5 (XPO5) at T345/S416/S497.

View Article and Find Full Text PDF

Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice.

View Article and Find Full Text PDF

We recently reported that Fhit is in a molecular complex with annexin A4 (ANXA4); following to their binding, Fhit delocalizes ANXA4 from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. Here, we demonstrate that Fhit physically interacts with A4 through its N-terminus; molecular dynamics simulations were performed on a 3D Fhit model to rationalize its mechanism of action. This approach allowed for the identification of the QHLIKPS heptapeptide (position 7 to 13 of the wild-type Fhit protein) as the smallest Fhit sequence still able to preserve its ability to bind ANXA4.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM.

View Article and Find Full Text PDF

Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures.

View Article and Find Full Text PDF

Nucleolin (NCL) is a nucleocytoplasmic protein involved in many biological processes, such as ribosomal assembly, rRNA processing, and mRNA stabilization. NCL also regulates the biogenesis of specific microRNAs (miRNAs) involved in tumor development and aggressiveness. Interestingly, NCL is expressed on the surface of actively proliferating cancer cells, but not on their normal counterparts.

View Article and Find Full Text PDF

The first transgenic mouse of the TCL1 oncogene was described more than 15 years ago, and since then, the overexpression of the gene in T- and B-cells in vivo has been extensively studied to reveal the molecular details in the pathogenesis of some lymphocytic leukemias. This review discusses the main features of the original TCL1 models and the different lines of research successively developed with particular attention to genetically compound mice and the therapeutic applications in drug development.

View Article and Find Full Text PDF

Background: The purpose of this study is to determine whether microRNA for pluripotent stem cells are also expressed in breast cancer and are associated with metastasis and outcome.

Methods: We studied global microRNA profiles during differentiation of human embryonic stem cells (n =26) and in breast cancer patients (n = 33) and human cell lines (n = 35). Using in situ hybridization, we then investigated MIR302 expression in 318 untreated breast cancer patients (test cohort, n = 22 and validation cohort, n = 296).

View Article and Find Full Text PDF

MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC).

View Article and Find Full Text PDF

Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex.

View Article and Find Full Text PDF

Toll-like receptor 3 (TLR3) is a key effector of the innate immune system against viruses. Activation of TLR3 exerts an antitumoral effect through a mechanism of action still poorly understood. Here we show that TLR3 activation by polyinosinic:polycytidylic acid induces up-regulation of microRNA-29b, -29c, -148b, and -152 in tumor-derived cell lines and primary tumors.

View Article and Find Full Text PDF
Article Synopsis
  • The TCL1 oncogene is linked to aggressive chronic lymphocytic leukemia (CLL) in humans and causes a similar disease in mice when dysregulated.
  • A genetic screen using Sleeping Beauty mutagenesis identified 7 oncogenes that work together with TCL1, with 4 of them involved in the NF-kB signaling pathway.
  • The findings suggest that targeting the combination of TCL1 and the NF-kB pathway could lead to better treatments for CLL by identifying new genes that contribute to cancer progression.
View Article and Find Full Text PDF

T-cell leukemia/lymphoma 1 (TCL1) is an oncogene overexpressed in T-cell prolymphocytic leukemia and in B-cell malignancies including B-cell chronic lymphocytic leukemia and lymphomas. To date, only a limited number of Tcl1-interacting proteins that regulate its oncogenic function have been identified. Prior studies used a proteomic approach to identify a novel interaction between Tcl1 with Ataxia Telangiectasia Mutated.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs, 19-24 nucleotides in length, that regulate gene expression and are expressed aberrantly in most types of cancer. MiRNAs also have been detected in the blood of cancer patients and can serve as circulating biomarkers. It has been shown that secreted miRNAs within exosomes can be transferred from cell to cell and can regulate gene expression in the receiving cells by canonical binding to their target messenger RNAs.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic lymphocytic leukemia (CLL) accounts for 30% of adult leukemia cases, with TCL1 expression found in about 90% of human CLL, and transgenic models show that TCL1 can induce CLL in mice.
  • The study reveals that the endoplasmic reticulum (ER) stress response is abnormally activated in both Eμ-TCL1 mouse models and human CLL, indicating a connection between TCL1 and certain transcription factors that lead to disease progression.
  • By inhibiting the IRE-1/XBP-1 pathway, researchers observed that CLL cells experienced apoptosis and halted growth, suggesting that targeting the ER stress response could be a novel treatment strategy for CLL.
View Article and Find Full Text PDF

B-cell chronic lymphocytic leukemia (CLL), the most common leukemia, originates from an expansion of a rare population of CD5+CD19+ mature B-cells. CLL occurs in two forms, aggressive and indolent. For the most part aggressive CLL shows high ZAP-70 expression and unmutated IgH V(H), while indolent CLL is characterized by low ZAP-70 expression and mutated IgH V(H).

View Article and Find Full Text PDF
Article Synopsis
  • B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in humans and is linked to the TCL1 oncogene, which promotes a similar aggressive form of leukemia in mice.
  • Research identified that the Tcl1 protein interacts with the DNA methyltransferases Dnmt3A and Dnmt3B, affecting their function.
  • Tcl1 overexpression was found to inhibit Dnmt3A activity and reduce DNA methylation levels, suggesting that decreased DNA methylation is a potential mechanism in the development of leukemia.
View Article and Find Full Text PDF

The T-cell leukemia/lymphoma 1 (TCL1) oncogene is a target of chromosomal translocations and inversions at 14q31.2, and its rearrangement in T cells causes T-cell prolymphocytic leukemias. TCL1 dysregulation in B cells is responsible for the development of an aggressive form of chronic lymphocytic leukemia (CLL), the most common human leukemia.

View Article and Find Full Text PDF