Background: The aim of this work was to investigate the serum amino acid (AA) changes after a breath-hold diving (BH-diving) training session under several aspects including energy need, fatigue tolerance, nitric oxide (NO) production, antioxidant synthesis and hypoxia adaptation. Twelve trained BH-divers were investigated during an open sea training session and sampled for blood 30 min before the training session, 30 min and 4 h after the training session. Serum samples were assayed for AA changes related to energy request (alanine, histidine, isoleucine, leucine, lysine, methionine, proline threonine, valine), fatigue tolerance (ornithine, phenylalanine, tyrosine), nitric oxide production (citrulline), antioxidant synthesis (cystine, glutamate, glycine) and hypoxia adaptation (serine, taurine).
View Article and Find Full Text PDFBackground: Breath-hold diving (BH-diving) is associated to extreme environmental conditions, prolonged physical activity, and complex adaptation mechanisms to supply enough O to vital organs. Consequently, one of the biggest effects could be an increased exercise-induced muscle fatigue, in both skeletal and cardiac muscles that can induce an increase of muscles injury markers including creatine kinase (CK), aspartate transferase (AST), and alanine transferase (ALT) when concerning the skeletal muscle, cardiac creatine kinase isoenzyme (CK-MBm) and cardiac troponin I (cTnI) when concerning the cardiac muscle, and lactate dehydrogenase (LDH) as index of muscle stress. The aim of this study is to investigate serum cardiac and skeletal muscle markers before and after a BH-diving training session.
View Article and Find Full Text PDFIntroduction: Nitric oxide (NO) is an essential signaling molecule modulating the endothelial adaptation during breath-hold diving (BH-diving). This study aimed to investigate changes in NO derivatives (NOx) and total antioxidant capacity (TAC), searching for correlations with different environmental and hyperbaric exposure.
Materials And Methods: Blood samples were obtained from 50 breath-hold divers (BH-divers) before, and 30 and 60 min after the end of training sessions performed both in a swimming pool or the sea.
Background: The physiological and pathophysiological mechanisms that govern diving, both self-contained underwater breathing apparatus (SCUBA) and breath-hold diving (BH-diving), are in large part well known, even if there are still many unknown aspects, in particular about cell metabolism during BH-diving. The scope of this study was to investigate changes in glycemia, insulinemia, and the catecholamine response to BH-diving, to better understand if the insulin-stimulated glucose uptake mechanism is involved in cellular metabolism in this sport.
Methods: Twenty male experienced healthy breath-hold divers were studied.
Introduction: Breath-hold diving-induced hemoptysis (BH-DIH) has been reported in about 25% breath-hold divers (BHD) and is characterized by dyspnea, coughing, hemoptysis and chest pain. We investigated whether eNOS G894T, eNOS T786C and ACE insertion/deletion I/D genetic variants, are possible BH-DIH risk factors.
Methods: 108 experienced healthy instructor BHDs with the same minimum requirements (102 male, six female; mean age 43.
Introduction: Hyperoxia causes oxidative stress. Breath-hold diving is associated with transient hyperoxia followed by hypoxia and a build-up of carbon dioxide (CO₂), chest-wall compression and significant haemodynamic changes. This study analyses variations in plasma oxidative stress markers after a series of repetitive breath-hold dives.
View Article and Find Full Text PDFIntroduction: After repetitive deep dives, breath-hold divers are often affected by a syndrome characterized by typical symptoms such as cough, sensation of chest constriction, blood-striated expectorate (hemoptysis) and, rarely, an overt acute pulmonary edema syndrome, often together with various degrees of dyspnea. The aim of this work is an epidemiological investigation to evaluate the prevalence of acute respiratory symptoms (ARS) in breath-hold divers (BHDs) in practicing breath-hold diving.
Materials And Methods: A retrospective investigation has been performed using specific questionnaires completed by a selected sample of free-divers (212 breath-hold diving instructors--194 male, 18 female; mean age 34 +/- 6.
The purpose of the study was to analyze the ultrasound lung comets (ULCs) variation, which are a sign of extra-vascular lung water. Forty-two healthy individuals performed breath-hold diving in different conditions: dynamic surface apnea; deep variable-weight apnea and shallow, face immersed without effort (static maximal and non-maximal). The number of ULCs was evaluated by means of an ultrasound scan of the chest, before and after breath-hold diving sessions.
View Article and Find Full Text PDFEur J Appl Physiol
September 2010
To define the dynamics of cardiovascular adjustments to apnoea during immersion, beat-to-beat heart rate (HR) and systolic (SBP) and diastolic (DBP) blood pressures were recorded in six divers during and after prolonged apnoeas while resting fully immersed in 27 degrees C water. Apnoeas lasted 215 +/- 35 s. Compared to control values, HR decreased by 20 beats min(-1) and SBP and DBP increased by 23 and 17 mmHg, respectively, in the initial 20 +/- 3 s (phase I).
View Article and Find Full Text PDF