The potential energy surface (PES) of C(2)H(5)(+)-N(2) is characterized in detail by infrared photodissociation (IRPD) spectroscopy of mass-selected ions in a quadrupole tandem mass spectrometer and ab initio calculations at the MP2/6-311G(2df,2pd) level. The PES features three nonequivalent minima. Two local minima, 1-N(2)(H) and 1-N(2)(C), are adduct complexes with binding energies of D(0) = 18 and 12 kJ/mol, in which the N(2) ligand is weakly bonded by electrostatic forces to either the acidic proton or the electrophilic carbon atom of the nonclassical C(2)H(5)(+) ion (1), respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2008
Infrared photodissociation (IRPD) spectra of mass-selected clusters composed of protonated aniline (C6H8N+ = AnH+) and a variable number of neutral ligands (L = Ar, N2) are obtained in the N-H stretch range. The AnH+ -Ln complexes (n < or = 3) are produced by chemical ionization in a supersonic expansion of An, H2, and L. The IRPD spectra of AnH+-Ln feature the unambiguous fingerprints of at least two different AnH+ nucleation centers, namely, the ammonium isomer (5) and the carbenium ions (1 and/or 3) corresponding to protonation at the N atom and at the C atoms in the para and/or ortho positions, respectively.
View Article and Find Full Text PDFThe intermolecular interaction between the imidazole cation (Im+ = C3N2H4+) and nonpolar ligands is characterized in the ground electronic state by infrared photodissociation (IRPD) spectroscopy of size-selected Im+-Ln complexes (L = Ar, N2) and quantum chemical calculations performed at the UMP2/6-311G(2df,2pd) and UB3LYP/6-311G(2df,2pd) levels of theory. The complexes are created in an electron impact cluster ion source, which predominantly produces the most stable isomers of a given cluster ion. The analysis of the size-dependent frequency shifts of both the N-H and the C-H stretch vibrations and the photofragmentation branching ratios provides valuable information about the stepwise microsolvation of Im+ in a nonpolar hydrophobic environment, including the formation of structural isomers, the competition between various intermolecular binding motifs (H-bonding and pi-bonding) and their interaction energies, and the acidity of both the CH and NH protons.
View Article and Find Full Text PDFProtonated fluorobenzene ions (C6H6F+) are produced by chemical ionization of C6H5F in the cell of a FT-ICR mass spectrometer using either CH5+ or C2H5+. The resulting protonation sites are probed by IR multiphoton dissociation (IRMPD) spectroscopy in the 600-1700 cm-1 fingerprint range employing the free electron laser at CLIO (Centre Laser Infrarouge Orsay). Comparison with quantum chemical calculations reveals that the IRMPD spectra are consistent with protonation in para and/or ortho position, which are the thermodynamically favored protonation sites.
View Article and Find Full Text PDFIsolated and microsolvated protonated ethanol clusters, (EtOH)qH+-Ln with L = Ar and N2, are characterized by infrared photodissociation (IRPD) spectroscopy in the 3 microm range and quantum chemical calculations. For comparison, also the spectrum of the protonated methanol dimer, (MeOH)2H+, is presented. The IRPD spectra carry the signature of H-bonded (EtOH)qH+ chain structures, in which the excess proton is either strongly localized on one or (nearly) equally shared between two EtOH molecules, corresponding to Eigen-type ion cores (EtOH2+ for q = 1, 3) or Zundel-type ion cores (EtOH-H+-HOEt for q = 2, 4), respectively.
View Article and Find Full Text PDFThis Communication reports IR spectra and density functional calculations for the isolated protonated ethanol dimer and its N2-microsolvated complexes, (EtOH)2H+-(N2)n (n = 0-2) to investigate the degree of delocalization of the excess proton in this fundamental building block of an alcohol proton wire. The first spectroscopic characterization of isolated and microsolvated (EtOH)2H+ suggests that the excess proton is (nearly) equally shared between both EtOH units under symmetric solvation conditions (Zundel-type ion, n = 0 and 2), whereas it is largely localized on a single EtOH molecule for asymmetric solvation (Eigen-type ion, n = 1).
View Article and Find Full Text PDFInfrared photodissociation (IRPD) spectra of clusters composed of protonated phenol (C(6)H(7)O(+)) and several ligands L are recorded in the O-H and C-H stretch ranges using a tandem mass spectrometer coupled to a cluster ion source. The C(6)H(7)O(+)-L(n) complexes (L=Ar/N(2), n=1-6) are generated by chemical ionization of a supersonic expansion. The IRPD spectra of mass selected C(6)H(7)O(+)-L(n) clusters obtained in various C(6)H(7)O(+)-L(m) fragment channels (m
Isomer-selective infrared photodissociation (IRPD) spectra are obtained for the first time for protonated polyfunctional aromatic molecules isolated in the gas phase. IRPD spectra of the oxonium and fluoronium isomers of protonated para-fluorophenol (C6H6FO+) were separately obtained by monitoring resonant photo-induced H2O and HF loss, respectively. Analysis of the F-H, O-H, and C-H stretch wave numbers provides valuable spectroscopic information on the chemical properties of these reactive intermediates, in particular on the substitution effects of functional groups.
View Article and Find Full Text PDFStructural isomers of isolated protonated phenol (C(6)H(7)O(+)) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N(2)). IR spectra of C(6)H(7)O(+)-L recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C(6)H(7)O(+) isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C(6)H(7)O(+)) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C(6)H(7)O(+)). In contrast, protonation at the meta and ipso positions is not observed.
View Article and Find Full Text PDFThe IR spectrum of the fluoronium isomer of protonated fluorobenzene (F-C(6)H(6)F(+), phenylfluoronium) is recorded in the vicinity of the C-H and F-H stretch fundamentals to obtain the first structured spectrum of an isolated protonated aromatic molecule in the gas phase. Stable F-C(6)H(6)F(+) ions are produced via proton transfer from CH(5)(+) to fluorobenzene (C(6)H(5)F) in a supersonic plasma expansion. The F-C(6)H(6)F(+) spectrum recorded between 2,540 and 4,050 cm(-1) is consistent with a weakly bound ion-dipole complex composed of HF and the phenyl cation, HF-C(6)H(5)(+).
View Article and Find Full Text PDF