Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically.
View Article and Find Full Text PDFMetastatic tumours in the brain now represent one of the leading causes of death from cancer. Current treatments are largely ineffective owing to the combination of late diagnosis and poor delivery of therapies across the blood-brain barrier (BBB). Conjugating magnetic resonance imaging (MRI) contrast agents with a monoclonal antibody for VCAM-1 (anti-VCAM1) has been shown to enable detection of micrometastases, two to three orders of magnitude smaller in volume than those currently detectable clinically.
View Article and Find Full Text PDFAims: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons.
Methods: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology.
Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres.
View Article and Find Full Text PDFBrain metastasis is responsible for a large proportion of cancer mortality, and there are currently no effective treatments. Moreover, the impact of treatments, particularly antiangiogenic therapeutics, is difficult to ascertain using current magnetic resonance imaging (MRI) methods. Imaging of the angiogenic vasculature has been successfully carried out in solid tumours using microparticles of iron oxide (MPIO) conjugated to a Arg-Gly-Asp peptide (RGD) targeting integrin α β .
View Article and Find Full Text PDFBreast cancer brain metastasis is a significant clinical problem and carries a poor prognosis. Although it is well-established that macrophages are a primary component of the brain metastasis microenvironment, the role of blood-derived macrophages (BDM) and brain-resident microglia in the progression of brain metastases remains uncertain. The aim of this study, therefore, was to determine the role, specifically, of pro- and anti-inflammatory BDM and microglial phenotypes on metastasis progression.
View Article and Find Full Text PDFPurpose: Despite optimal local therapy, tumor cell invasion into normal brain parenchyma frequently results in recurrence in patients with solid tumors. The aim of this study was to determine whether microvascular inflammation can be targeted to better delineate the tumor-brain interface through vascular cell adhesion molecule-1 (VCAM-1)-targeted MRI.
Experimental Design: Intracerebral xenograft rat models of MDA231Br-GFP (breast cancer) brain metastasis and U87MG (glioblastoma) were used to histologically examine the tumor-brain interface and to test the efficacy of VCAM-1-targeted MRI in detecting this region.
Purpose: In chemical exchange saturation transfer imaging, saturation effects between 2 to 5 ppm (nuclear Overhauser effects, NOEs) have been shown to exhibit contrast in preclinical stroke models. Our previous work on NOEs in human stroke used an analysis model that combined NOEs and semisolid MT; however their combination might feasibly have reduced sensitivity to changes in NOEs. The aim of this study was to explore the information a 4-pool Bloch-McConnell model provides about the NOE contribution in ischemic stroke, contrasting that with an intentionally approximate 3-pool model.
View Article and Find Full Text PDFPurpose: Early diagnosis of cancer is critical for improving patient outcomes, but cancers may be hard to diagnose if patients present with nonspecific signs and symptoms. We have previously shown that nuclear magnetic resonance (NMR) metabolomics analysis can detect cancer in animal models and distinguish between differing metastatic disease burdens. Here, we hypothesized that biomarkers within the blood metabolome could identify cancers within a mixed population of patients referred from primary care with nonspecific symptoms, the so-called "low-risk, but not no-risk" patient group, as well as distinguishing between those with and without metastatic disease.
View Article and Find Full Text PDFBrain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue.
View Article and Find Full Text PDFBackground: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner.
View Article and Find Full Text PDFUltrasound and microbubbles (MBs) offer a noninvasive method of temporarily enhancing blood-brain barrier (BBB) permeability to therapeutics. To reduce off-target effects, it is desirable to minimize the ultrasound pressures required. It has been shown that a new formulation of MBs containing lysolipids (Lyso-MBs) can increase the cellular uptake of a model drug in vitro.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
July 2021
Molecular magnetic resonance imaging (MRI) allows visualization of biological processes at the molecular level. Upregulation of endothelial ALCAM (activated leukocyte cell adhesion molecule) is a key element for leukocyte recruitment in neurological disease. The aim of this study, therefore, was to develop a novel molecular MRI contrast agent, by conjugating anti-ALCAM antibodies to microparticles of iron oxide (MPIO), for detection of endothelial ALCAM expression .
View Article and Find Full Text PDFPurpose: To assess the correlation and differences between common amide proton transfer (APT) quantification methods in the diagnosis of ischemic stroke.
Methods: Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T.
Astrocytes are thought to play a pivotal role in coupling neural activity and cerebral blood flow. However, it has been shown that astrocytes undergo morphologic changes in response to brain metastasis, switching to a reactive phenotype, which has the potential to significantly compromise cerebrovascular function and contribute to the neurological sequelae associated with brain metastasis. Given that STAT3 is a key regulator of astrocyte reactivity, we aimed here to determine the impact of STAT3-mediated astrocyte reactivity on neurovascular function in brain metastasis.
View Article and Find Full Text PDFSpread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.
View Article and Find Full Text PDFWhite matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI.
View Article and Find Full Text PDFPurpose: Brain metastases are almost universally lethal with short median survival times. Despite this, they are often potentially curable, with therapy failing only because of local relapse. One key reason relapse occurs is because treatment planning did not delineate metastasis margins sufficiently or accurately, allowing residual tumor to regrow.
View Article and Find Full Text PDFPurpose: High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images.
View Article and Find Full Text PDFPurpose: Targeted alpha therapy (TAT) takes advantage of the short-range and high-linear energy transfer of α-particles and is increasingly used, especially for the treatment of metastatic lesions. Nevertheless, dosimetry of α-emitters is challenging for the very same reasons, even for in vitro experiments. Assumptions, such as the uniformity of the distribution of radionuclides in the culture medium, are commonly made, which could have a profound impact on dose calculations.
View Article and Find Full Text PDFThe interactions of anterior temporal structures, and especially the amygdala, with the prefrontal cortex are pivotal to learning, decision-making, and socio-emotional regulation. A clear anatomical description of the organization and dissociation of fiber bundles linking anterior temporal cortex/amygdala and prefrontal cortex in humans is still lacking. Using diffusion imaging techniques, we reconstructed fiber bundles between these anatomical regions in human and macaque brains.
View Article and Find Full Text PDFCirculating extracellular vesicles (EVs) regulate signaling pathways via receptor-ligand interactions and content delivery, after attachment or internalization by endothelial cells. However, they originate from diverse cell populations and are heterogeneous in composition. To determine the effects of specific surface molecules, the use of synthetic EV mimetics permits the study of specific EV receptor-ligand interactions.
View Article and Find Full Text PDF