Publications by authors named "Nicola Quercioli"

In this article, we propose a topological model to encode partial equivariance in neural networks. To this end, we introduce a class of operators, called P-GENEOs, that change data expressed by measurements, respecting the action of certain sets of transformations, in a non-expansive way. If the set of transformations acting is a group, we obtain the so-called GENEOs.

View Article and Find Full Text PDF

Group Equivariant Operators (GEOs) are a fundamental tool in the research on neural networks, since they make available a new kind of geometric knowledge engineering for deep learning, which can exploit symmetries in artificial intelligence and reduce the number of parameters required in the learning process. In this paper we introduce a new method to build non-linear GEOs and non-linear Group Equivariant Non-Expansive Operators (GENEOs), based on the concepts of symmetric function and permutant. This method is particularly interesting because of the good theoretical properties of GENEOs and the ease of use of permutants to build equivariant operators, compared to the direct use of the equivariance groups we are interested in.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondcep0ir6klg5mu3nsf3rkegsfpmmm9v0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once