Publications by authors named "Nicola Prezza"

Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires bits, being the number of states, while the compact representation of Wheeler DFAs often requires much less space.

View Article and Find Full Text PDF

Matching statistics were introduced to solve the approximate string matching problem, which is a recurrent subroutine in bioinformatics applications. In 2010, Ohlebusch et al. [SPIRE 2010] proposed a time and space efficient algorithm for computing matching statistics which relies on some components of a compressed suffix tree - notably, the longest common prefix (LCP) array.

View Article and Find Full Text PDF

Background: The construction of a suffix array for a collection of strings is a fundamental task in Bioinformatics and in many other applications that process strings. Related data structures, as the Longest Common Prefix array, the Burrows-Wheeler transform, and the document array, are often needed to accompany the suffix array to efficiently solve a wide variety of problems. While several algorithms have been proposed to construct the suffix array for a single string, less emphasis has been put on algorithms to construct suffix arrays for string collections.

View Article and Find Full Text PDF

Background: In [Prezza et al., AMB 2019], a new reference-free and alignment-free framework for the detection of SNPs was suggested and tested. The framework, based on the Burrows-Wheeler Transform (BWT), significantly improves sensitivity and precision of previous de Bruijn graphs based tools by overcoming several of their limitations, namely: (i) the need to establish a fixed value, usually small, for the order k, (ii) the loss of important information such as k-mer coverage and adjacency of k-mers within the same read, and (iii) bad performance in repeated regions longer than k bases.

View Article and Find Full Text PDF

Background: Sequencing technologies keep on turning cheaper and faster, thus putting a growing pressure for data structures designed to efficiently store raw data, and possibly perform analysis therein. In this view, there is a growing interest in alignment-free and reference-free variants calling methods that only make use of (suitably indexed) raw reads data.

Results: We develop the theory that (i) describes how the extended Burrows-Wheeler Transform (eBWT) of a collection of reads tends to cluster together bases that cover the same genome position (ii) predicts the size of such clusters, and (iii) exhibits an elegant and precise LCP array based procedure to locate such clusters in the eBWT.

View Article and Find Full Text PDF

Arsenic, a carcinogen with immunotoxic effects, is a common contaminant of drinking water and certain food worldwide. We hypothesized that chronic arsenic exposure alters gene expression, potentially by altering DNA methylation of genes encoding central components of the immune system. We therefore analyzed the transcriptomes (by RNA sequencing) and methylomes (by target-enrichment next-generation sequencing) of primary CD4-positive T cells from matched groups of four women each in the Argentinean Andes, with fivefold differences in urinary arsenic concentrations (median concentrations of urinary arsenic in the lower- and high-arsenic groups: 65 and 276 μg/l, respectively).

View Article and Find Full Text PDF

Background: Bisulfite treatment of DNA followed by sequencing (BS-seq) has become a standard technique in epigenetic studies, providing researchers with tools for generating single-base resolution maps of whole methylomes. Aligning bisulfite-treated reads, however, is a computationally difficult task: bisulfite treatment decreases the (lexical) complexity of low-methylated genomic regions, and C-to-T mismatches may reflect cytosine unmethylation rather than SNPs or sequencing errors. Further challenges arise both during and after the alignment phase: data structures used by the aligner should be fast and should fit into main memory, and the methylation-caller output should be somehow compressed, due to its significant size.

View Article and Find Full Text PDF

Background: The high throughput of modern NGS sequencers coupled with the huge sizes of genomes currently analysed, poses always higher algorithmic challenges to align short reads quickly and accurately against a reference sequence. A crucial, additional, requirement is that the data structures used should be light. The available modern solutions usually are a compromise between the mentioned constraints: in particular, indexes based on the Burrows-Wheeler transform offer reduced memory requirements at the price of lower sensitivity, while hash-based text indexes guarantee high sensitivity at the price of significant memory consumption.

View Article and Find Full Text PDF