Glycosylation significantly alters the biological and physicochemical properties of small molecules. β-Lactam alcohols comprise eligible substrates for such a transformation based on their distinct relevance in the chemical and medicinal community. In this framework, the unprecedented enzymatic glycosylation of the rigid and highly strained four-membered β-lactam azaheterocycle was studied.
View Article and Find Full Text PDFThe reactivity of 3-oxo-β-lactams with respect to primary amines was investigated in depth. Depending on the specific azetidin-2-one C4 substituent, this reaction was shown to selectively produce 3-imino-β-lactams (through dehydration), α-aminoamides (through CO elimination), or ethanediamides (through an unprecedented C3-C4 ring opening). In addition to the experimental results, the mechanisms and factors governing these peculiar transformations were also examined and elucidated by means of DFT calculations.
View Article and Find Full Text PDFThe Co(CO)-catalyzed carbonylation of different classes of non-activated aziridines with diverse substitution patterns was investigated. Special attention was devoted to selectivity issues and reaction optimization. This study resulted in the regio- and stereospecific synthesis of 24 novel β-lactam target structures in high yields on a multigram scale.
View Article and Find Full Text PDFcis-3-Acetoxy-4-(3-aryloxiran-2-yl)azetidin-2-ones were prepared through a Staudinger [2+2]-cyclocondensation between acetoxyketene and the appropriate epoxyimines in a highly diastereoselective way. Subsequent potassium carbonate-mediated acetate hydrolysis, followed by intramolecular ring closure through epoxide ring opening, afforded stereodefined 3-aryl-4-hydroxy-2-oxa-6-azabicyclo[3.2.
View Article and Find Full Text PDFTrans- and cis-2-aryl-3-(2-cyanoethyl)aziridines, prepared via alkylation of the corresponding 2-aryl-3-(tosyloxymethyl)aziridines with the sodium salt of trimethylsilylacetonitrile, were transformed into variable mixtures of 4-[aryl(alkylamino)methyl]butyrolactones and 5-[aryl(hydroxy)methyl]pyrrolidin-2-ones via KOH-mediated hydrolysis of the cyano group, followed by ring expansion. In addition, next to this chemical approach, enzymatic hydrolysis of the former aziridinyl nitriles by means of a nitrilase was performed as well, interestingly providing a selective route towards the above-mentioned functionalized γ-lactams.
View Article and Find Full Text PDFThe reactivity of 3-hydroxy-4-(1,2-dihydroxyethyl)-β-lactams with regard to the oxidant sodium periodate was evaluated, unexpectedly resulting in the exclusive formation of new 2-hydroxy-1,4-oxazin-3-ones through a C3C4 bond cleavage of the intermediate 4-formyl-3-hydroxy-β-lactams followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known NaIO(4)-mediated oxidation of 3-alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)-β-lactams, which exclusively leads to the corresponding 4-formyl-β-lactams without a subsequent ring enlargement. In addition, this new class of functionalized oxazin-3-ones was further evaluated for its potential use as building blocks in the synthesis of a variety of differently substituted oxazin-3-ones, morpholin-3-ones and pyrazinones.
View Article and Find Full Text PDF