Background: Magnetic Resonance acquisition is a time consuming process, making it susceptible to patient motion during scanning. Even motion in the order of a millimeter can introduce severe blurring and ghosting artifacts, potentially necessitating re-acquisition. Magnetic Resonance Imaging (MRI) can be accelerated by acquiring only a fraction of k-space, combined with advanced reconstruction techniques leveraging coil sensitivity profiles and prior knowledge.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
Data features and class probabilities are two main perspectives when, e.g., evaluating model results and identifying problematic items.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2024
Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training data domain does not reflect the deployment data domain.
View Article and Find Full Text PDFModeling and representing 3D shapes of the human body and face is a prominent field due to its applications in the healthcare, clothes, and movie industry. In our work, we tackled the problem of 3D face and body synthesis by reducing 3D meshes to 2D image representations. We show that the face can naturally be modeled on a 2D grid.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2024
In recent years, visual analytics (VA) has shown promise in alleviating the challenges of interpreting black-box deep learning (DL) models. While the focus of VA for explainable DL has been mainly on classification problems, DL is gaining popularity in high-dimensional-to-high-dimensional (H-H) problems such as image-to-image translation. In contrast to classification, H-H problems have no explicit instance groups or classes to study.
View Article and Find Full Text PDFControlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity.
View Article and Find Full Text PDFIn recent years the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm has become one of the most used and insightful techniques for exploratory data analysis of high-dimensional data. It reveals clusters of high-dimensional data points at different scales while only requiring minimal tuning of its parameters. However, the computational complexity of the algorithm limits its application to relatively small datasets.
View Article and Find Full Text PDFAuto-reactive CD8 T-cells play an important role in the destruction of pancreatic β-cells resulting in type 1 diabetes (T1D). However, the phenotype of these auto-reactive cytolytic CD8 T-cells has not yet been extensively described. We used high-dimensional mass cytometry to phenotype autoantigen- (pre-proinsulin), neoantigen- (insulin-DRIP) and virus- (cytomegalovirus) reactive CD8 T-cells in peripheral blood mononuclear cells (PBMCs) of T1D patients.
View Article and Find Full Text PDFTechnological advances in mass spectrometry imaging (MSI) have contributed to growing interest in 3D MSI. However, the large size of 3D MSI data sets has made their efficient analysis and visualization and the identification of informative molecular patterns computationally challenging. Hierarchical stochastic neighbor embedding (HSNE), a nonlinear dimensionality reduction technique that aims at finding hierarchical and multiscale representations of large data sets, is a recent development that enables the analysis of millions of data points, with manageable time and memory complexities.
View Article and Find Full Text PDFMass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2018
Deep neural networks are now rivaling human accuracy in several pattern recognition problems. Compared to traditional classifiers, where features are handcrafted, neural networks learn increasingly complex features directly from the data. Instead of handcrafting the features, it is now the network architecture that is manually engineered.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2018
Single-cell analysis through mass cytometry has become an increasingly important tool for immunologists to study the immune system in health and disease. Mass cytometry creates a high-dimensional description vector for single cells by time-of-flight measurement. Recently, t-Distributed Stochastic Neighborhood Embedding (t-SNE) has emerged as one of the state-of-the-art techniques for the visualization and exploration of single-cell data.
View Article and Find Full Text PDFSpatial and temporal brain transcriptomics has recently emerged as an invaluable data source for molecular neuroscience. The complexity of such data poses considerable challenges for analysis and visualization. We present BrainScope: a web portal for fast, interactive visual exploration of the Allen Atlases of the adult and developing human brain transcriptome.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
July 2017
Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of high-dimensional data.
View Article and Find Full Text PDF