Combining symbolic and geometric reasoning in multiagent systems is a challenging task that involves planning, scheduling, and synchronization problems. Existing works overlooked the variability of task duration and geometric feasibility intrinsic to these systems because of the interaction between agents and the environment. We propose a combined task and motion planning approach to optimize the sequencing, assignment, and execution of tasks under temporal and spatial variability.
View Article and Find Full Text PDFSensors (Basel)
February 2022
The study of human-machine interaction as a unique control system was one of the first research interests in the engineering field, with almost a century having passed since the first works appeared in this area. At the same time, it is a crucial aspect of the most recent technological developments made in application fields such as collaborative robotics and artificial intelligence. Learning the processes and dynamics underlying human control strategies when interacting with controlled elements or objects of a different nature has been the subject of research in neuroscience, aerospace, robotics, and artificial intelligence.
View Article and Find Full Text PDFHuman-robot cooperation is increasingly demanded in industrial applications. Many tasks require the robot to enhance the capabilities of humans. In this scenario, safety also plays an important role in avoiding any accident involving humans, robots, and the environment.
View Article and Find Full Text PDFUpper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2014
Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
The ankle represents a fairly complex bone structure, resulting in kinematics that hinders a flawless robot-assisted recovery of foot motility in impaired subjects. The paper proposes a novel device for ankle-foot neuro-rehabilitation based on a mechatronic redesign of the remarkable Agile Eye spherical robot on the basis of clinical requisites. The kinematic design allows the positioning of the ankle articular center close to the machine rotation center with valuable benefits in term of therapy functions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
This paper presents the novel hybrid kinematic structure of the Active Headframe, a robotic head support to be employed in brain surgery operations for an active and dynamic control of the patient's head position and orientation, particularly addressing awake surgery requirements. The topology has been conceived in order to satisfy all the installation, functional and dynamic requirements. A kinetostatic optimization has been performed to obtain the actual geometric dimensions of the prototype currently being developed.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2012
This paper presents advantages of introducing elbow-joints misalignments in an exoskeleton for upper limb rehabilitation. Typical exoskeletons are characterized by axes of the device as much as possible aligned to the rotational axes of human articulations. This approach leads to advantages in terms of movements and torques decoupling, but can lead to limitations nearby the elbow singular configuration.
View Article and Find Full Text PDF