Publications by authors named "Nicola Paradiso"

We present a comprehensive investigation of the Berezinskii-Kosterlitz-Thouless transition in ultrathin strongly disordered NbN films. Measurements of resistance, current-voltage characteristics, and kinetic inductance on the very same device reveal a consistent picture of a sharp unbinding transition of vortex-antivortex pairs that fit standard renormalization group theory without extra assumptions in terms of inhomogeneity. Our experiments demonstrate that the previously observed broadening of the transition is not an intrinsic feature of strongly disordered superconductors and provide a clean starting point for the study of dynamical effects at the Berezinskii-Kosterlitz-Thouless transition.

View Article and Find Full Text PDF

Nonreciprocal transport refers to charge transfer processes that are sensitive to the bias polarity. Until recently, nonreciprocal transport was studied only in dissipative systems, where the nonreciprocal quantity is the resistance. Recent experiments have, however, demonstrated nonreciprocal supercurrent leading to the observation of a supercurrent diode effect in Rashba superconductors.

View Article and Find Full Text PDF

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive.

View Article and Find Full Text PDF

We demonstrate long-range superconducting correlations in a several-micrometers-long carbon nanotube bundle encapsulated in a van der Waals stack between hBN and NbSe. We show that a substantial supercurrent flows through the nanotube section beneath the NbSe crystal as well as through the 2 μm long section not in contact with it. The large in-plane critical magnetic field of this supercurrent is an indication that even inside the carbon nanotube Cooper pairs enjoy a degree of paramagnetic protection typical of the parent Ising superconductor.

View Article and Find Full Text PDF

Monolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.

View Article and Find Full Text PDF

We present simultaneous measurements of Josephson inductance and dc transport characteristics of ballistic Josephson junctions based upon an epitaxial Al-InAs heterostructure. The Josephson inductance at finite current bias directly reveals the current-phase relation. The proximity-induced gap, the critical current and the average value of the transparency τ[over ¯] are extracted without need for phase bias, demonstrating, e.

View Article and Find Full Text PDF

Illumination of atoms by resonant lasers can pump electrons into a coherent superposition of hyperfine levels which can no longer absorb the light. Such superposition is known as a dark state, because fluorescent light emission is then suppressed. Here we report an all-electric analogue of this destructive interference effect in a carbon nanotube quantum dot.

View Article and Find Full Text PDF

We directly monitor exciton propagation in freestanding and SiO_{2}-supported WS_{2} monolayers through spatially and time-resolved microphotoluminescence under ambient conditions. We find a highly nonlinear behavior with characteristic, qualitative changes in the spatial profiles of the exciton emission and an effective diffusion coefficient increasing from 0.3 to more than 30  cm^{2}/s, depending on the injected exciton density.

View Article and Find Full Text PDF

Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures.

View Article and Find Full Text PDF

Transport experiments provide conflicting evidence on the possible existence of fractional order within integer quantum Hall systems. In fact, integer edge states sometimes behave as monolithic objects with no inner structure, while other experiments clearly highlight the role of fractional substructures. Recently developed low-temperature scanning probe techniques offer today an opportunity for a deeper-than-ever investigation of spatial features of such edge systems.

View Article and Find Full Text PDF

We report a novel method for probing the gate-voltage dependence of the surface potential of individual semiconductor nanowires. The statistics of electronic occupation of a single defect on the surface of the nanowire, determined from a random telegraph signal, is used as a measure for the local potential. The method is demonstrated for the case of one or two switching defects in indium arsenide (InAs) nanowire field effect transistors at temperatures T=25-77 K.

View Article and Find Full Text PDF

Controllable point junctions between different quantum Hall phases are a necessary building block for the development of mesoscopic circuits based on fractionally charged quasiparticles. We demonstrate how particle-hole duality can be exploited to realize such point-contact junctions. We show an implementation for the case of two quantum Hall liquids at filling factors nu=1 and nu* View Article and Find Full Text PDF