Episodic memory relies on the entorhinal cortex (EC), a crucial hub connecting the hippocampus and sensory processing regions. This study investigates the role of the lateral EC (LEC) in episodic-like memory in mice. Here, we employ the object-place-context-recognition task (OPCRT), a behavioral test used to study episodic-like memory in rodents.
View Article and Find Full Text PDFThe lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease.
View Article and Find Full Text PDFMood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (TAM) brain levels back to normal. TAM is a thyroid hormone derivative with cognitive effects.
View Article and Find Full Text PDFβ-Amyloid is one of the main pathological hallmarks of Alzheimer's disease and plays a major role in synaptic dysfunction. It has been demonstrated that β-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of β-amyloid action within a specific circuitry has not been elucidated yet.
View Article and Find Full Text PDFAlzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field.
View Article and Find Full Text PDFSynaptic dysfunction is an early mechanism in Alzheimer's disease that involves progressively larger areas of the brain over time. However, how it starts and propagates is unknown. Here we show that amyloid-β released by microglia in association with large extracellular vesicles (Aβ-EVs) alters dendritic spine morphology in vitro, at the site of neuron interaction, and impairs synaptic plasticity both in vitro and in vivo in the entorhinal cortex-dentate gyrus circuitry.
View Article and Find Full Text PDFTau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment.
View Article and Find Full Text PDFAbnormalities in thyroid hormones (TH) availability and/or metabolism have been hypothesized to contribute to Alzheimer's disease (AD) and to be a risk factor for stroke. Recently, 3-iodothyronamine (TAM), an endogenous amine putatively derived from TH metabolism, gained interest for its ability to promote learning and memory in the mouse. Moreover, TAM has been demonstrated to rescue the β-Amyloid dependent LTP impairment in the entorhinal cortex (EC), a brain area crucially involved in learning and memory and early affected during AD.
View Article and Find Full Text PDFOne of the most striking reported symptoms in CoViD-19 is loss of smell and taste. The frequency of these impairments and their specificity as a potential central nervous system function biomarker are of great interest as a diagnostic clue for CoViD-19 infection as opposed to other similar symptomatologic diseases and because of their implication in viral pathogenesis. Here severe CoViD-19 was investigated by comparing self-report vs.
View Article and Find Full Text PDFMany studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer's disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies.
View Article and Find Full Text PDF3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition.
View Article and Find Full Text PDFA novel form of thyroid hormone (TH) signaling is represented by 3-iodothyronamine (TAM), an endogenous TH derivative that interacts with specific molecular targets, including trace amine-associated receptor 1 (TAAR), and induces pro-learning and anti-amnestic effects in mice. Dysregulation of TH signaling has long been hypothesized to play a role in Alzheimer's disease (AD). In the present investigation, we explored the neuroprotective role of TAM in beta amyloid (Aβ)-induced synaptic and behavioral impairment, focusing on the entorhinal cortex (EC), an area that is affected early by AD pathology.
View Article and Find Full Text PDFFailure of anti-amyloid-β peptide (Aβ) therapies against Alzheimer's disease (AD), a neurodegenerative disorder characterized by high amounts of the peptide in the brain, raised the question of the physiological role of Aβ released at low concentrations in the healthy brain. To address this question, we studied the presynaptic and postsynaptic mechanisms underlying the neuromodulatory action of picomolar amounts of oligomeric Aβ (oAβ) on synaptic glutamatergic function in male and female mice. We found that 200 pm oAβ induces an increase of frequency of miniature EPSCs and a decrease of paired pulse facilitation, associated with an increase in docked vesicle number, indicating that it augments neurotransmitter release at presynaptic level.
View Article and Find Full Text PDFEndophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models.
View Article and Find Full Text PDFNeuroinflammation is a fundamental mechanism in Alzheimer's disease (AD) progression. The stress-induced activation of the p38α mitogen-activated protein kinase (MAPK) leads to increased production of proinflammatory cytokines and neurodegeneration. We investigated the effects of an isoform selective p38α MAPK inhibitor, MW01-18-150SRM (MW150), administered at 2.
View Article and Find Full Text PDFAlzheimer's and Parkinson's diseases are the most common neurodegenerative diseases worldwide and their incidence is increasing due to the aging population. At the moment, the available therapies are not disease modifying and have several limitations, some of which are discussed in this review. One of the main limitations of these treatments is the low concentration that drugs reach in the central nervous system after systemic administration.
View Article and Find Full Text PDFThe Entorhinal cortex (EC) has been implicated in the early stages of Alzheimer's disease (AD). In particular, spreading of neuronal dysfunction within the EC-Hippocampal network has been suggested. We have investigated the time course of EC dysfunction in the AD mouse model carrying human mutation of amyloid precursor protein (mhAPP) expressing human Aβ.
View Article and Find Full Text PDFBackground: Classical thyroid hormones have an established necessary role in the normal development of the central nervous system, and they have been recently considered as decisive factors influencing cognitive functions in the adult brain and involved in the development of Alzheimer's disease. The picture summarizing thyroid hormone effects on the adult brain, however, does not only include classical thyroid hormones but also the products of their peripheral metabolism. These latter have been considered as inactive breakdown products for long but recently were proved to produce significant biological effects.
View Article and Find Full Text PDFNerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V.
View Article and Find Full Text PDFAlthough α6-contaning (α6*) nicotinic acetylcholine receptors (nAChRs) are densely expressed in the visual system, their role is not well known. We have characterized a family of toxins that are antagonists for α6β2* receptors and used one of these [RDP-MII(E11R)] to localize α6* nAChRs and investigate their impact on retinal function in adult Long-Evans rats. The α6*nAChRs in retinal tissue were localized using either a fluorescently tagged [RDP-MII(E11R)] or anti-α6-specific antibodies and found to be predominantly at the level of the ganglion cell layer.
View Article and Find Full Text PDFClinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms.
View Article and Find Full Text PDFTransl Vis Sci Technol
November 2015
Purpose: To test whether the topical eye treatment with BDNF prevents the effects of continuous light exposure (LE) in the albino rat retina.
Methods: Two groups of albino rats were used. The first group of rats received an intraocular injection of BDNF (2 μL, 1 μg/μL) before LE, while the second group was treated with one single drop of BDNF (10 μL, 12 μg/μL) dissolved in different types of solutions (physiological solution, the polysaccharide fraction of Tamarind gum, TSP, and sodium carboxy methyl cellulose), at the level of conjunctival fornix before LE.
The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years.
View Article and Find Full Text PDFThe oligomeric form of the amyloid peptide Aβ(1-42) is capable of perturbing synaptic plasticity in different brain areas. Here, we evaluated the protective role of brain-derived neurotrophic factor (BDNF) in beta amyloid (Aβ)-dependent impairment of long-term potentiation in entorhinal cortex (EC) slices. We found that BDNF (1 ng/mL) supplied by perfusion was able to rescue long-term potentiation in Aβ(1-42)-treated slices; BDNF protection was mediated by TrkB receptor as assessed by using the tyrosine kinase inhibitor K252a (200 nM).
View Article and Find Full Text PDF