Publications by authors named "Nicola Montesano Gesualdi"

The hypothesis that the cytosolic RNase inhibitor (cRI) has a role in the protection of the cellular redox homeostasis was investigated testing the effects of oxidants and anti-oxidants on normal, primary endothelial HUVE cells, and malignant HeLa cells, before and after their engineering into cRI-deprived cells. We found that cRI plays an important, possibly a key, physiological role in the protection of cells from redox stress, as demonstrated by decreased GSH levels as well as increased oxidant-induced DNA damage in cRI deprived cells.

View Article and Find Full Text PDF

The regulation of the activation of non phagocytic NADPH oxidase is poorly understood. Previously we demonstrated that in fibroblasts the exposure to WKYMVm induced p47(phox) phosphorylation and translocation and that these effects were mediated by ERKs activation. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in polymorphonucleate cells stimulated via FPRL1 receptor, but its involvement in fibroblasts was not demonstrated.

View Article and Find Full Text PDF

Transient adaptation to mild oxidative stress was induced in human osteosarcoma cells chronically grown in sub-toxic concentrations of diethylmaleate (DEM), a glutathione (GSH) depleting agent. The adapted cells, compared to untreated cells, contain increased concentrations of GSH (4-6 fold) which, upon DEM withdrawal from the culture medium, return to normal values and are more resistant to subsequent oxidizing stress induced either by toxic concentrations of the same agent or by (H(2)O(2)) treatment. To investigate the molecular mechanisms involved in the adaptive response to oxidative stress, we analyzed the gene expression profiles of DEM-adapted cells by differential display.

View Article and Find Full Text PDF

1. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders affecting 1 in 10,000 individuals. The present study was aimed to elucidate the role played by reactive oxygen species (ROS) in the pathogenesis of this disease.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) participate as second messengers in the mitogenic signal transduction. Most of the experimental data supporting the role of ROS as signaling molecules have been obtained by using H2O2. Exposure of cells to H2O2 rapidly increases tyrosine phosphorylation of tyrosine kinase receptors (TKRs) in the absence of growth factor binding, thus inducing the activation of downstream signaling cascades, like that of protein kinase B (AKT).

View Article and Find Full Text PDF