Deposits from explosive submarine eruptions have been found in the deep sea, 1-4 km below the surface, with both flow and fall deposits extending several km's over the seafloor. A model of a turbulent fountain suggests that after rising 10-20 m above the vent, the erupting particle-laden mixture entrains and mixes with sufficient seawater that it becomes denser than seawater. The momentum of the resulting negatively buoyant fountain is only sufficient to carry the material 50-200 m above the seafloor and much of the solid material then collapses to the seafloor; this will not produce the far-reaching fall deposits observed on the seabed.
View Article and Find Full Text PDFThe year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.
View Article and Find Full Text PDFMany of the standard volcanic gas flux measurement approaches involve absorption spectroscopy in combination with wind speed measurements. Here, we present a new method using video images of volcanic plumes to measure the speed of convective structures combined with classical plume theory to estimate volcanic fluxes. We apply the method to a nearly vertical gas plume at Villarrica Volcano, Chile, and a wind-blown gas plume at Mount Etna, Italy.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2020
Turbulent buoyant plumes moving through density stratified environments transport large volumes of fluid vertically. Eventually, the fluid reaches its neutral buoyancy level at which it intrudes into the environment. For single-phase plume, the well-known theory of Morton, Taylor and Turner (Morton BR, Taylor GI, Turner JS.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2016
We consider the displacement of one fluid by a second immiscible fluid through a long, thin permeable channel whose thickness and permeability decrease away from the axis of the channel. We build a model that illustrates how the shape of the fluid-fluid interface evolves in time. We find that if the injected fluid is of the same viscosity as the original fluid, then the cross-channel variations in permeability and thickness tend to focus the flow along the centre of the channel.
View Article and Find Full Text PDF