Publications by authors named "Nicola Maio"

Motivation: Tracking SARS-CoV-2 variants through genomic sequencing has been an important part of the global response to the pandemic and remains a useful tool for surveillance of the virus. As well as whole-genome sequencing of clinical samples, this surveillance effort has been aided by amplicon sequencing of wastewater samples, which proved effective in real case studies. Because of its relevance to public healthcare decisions, testing and benchmarking wastewater sequencing analysis methods is also crucial, which necessitates a simulator.

View Article and Find Full Text PDF
Article Synopsis
  • The BAG3 protein plays a key role in regulating cell survival and is being studied as a potential target for treating various cancers, particularly B-cell chronic lymphocytic leukemia (B-CLL).
  • Research shows that silencing BAG3 in stromal fibroblasts leads to increased apoptosis in B-CLL cells by disrupting critical survival signaling pathways.
  • The study highlights the link between BAG3 expression, cytokine networks, and tumor survival, suggesting that understanding these interactions could lead to new therapies for CLL.
View Article and Find Full Text PDF

We have recently introduced MAPLE (MAximum Parsimonious Likelihood Estimation), a new pandemic-scale phylogenetic inference method exclusively designed for genomic epidemiology. In response to the need for enhancing MAPLE's performance and scalability, here we present two key components: (i) CMAPLE software, a highly optimized C++ reimplementation of MAPLE with many new features and advancements, and (ii) CMAPLE library, a suite of application programming interfaces to facilitate the integration of the CMAPLE algorithm into existing phylogenetic inference packages. Notably, we have successfully integrated CMAPLE into the widely used IQ-TREE 2 software, enabling its rapid adoption in the scientific community.

View Article and Find Full Text PDF

Satellite DNA (sat-DNA) was previously described as junk and selfish DNA in the cellular economy, without a clear functional role. However, during the last two decades, evidence has been accumulated about the roles of sat-DNA in different cellular functions and its probable involvement in tumorigenesis and adaptation to environmental changes. In molluscs, studies on sat-DNAs have been performed mainly on bivalve species, especially those of economic interest.

View Article and Find Full Text PDF

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites.

View Article and Find Full Text PDF

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine-learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome.

View Article and Find Full Text PDF

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this mold.

View Article and Find Full Text PDF

Phylogenetics has a crucial role in genomic epidemiology. Enabled by unparalleled volumes of genome sequence data generated to study and help contain the COVID-19 pandemic, phylogenetic analyses of SARS-CoV-2 genomes have shed light on the virus's origins, spread, and the emergence and reproductive success of new variants. However, most phylogenetic approaches, including maximum likelihood and Bayesian methods, cannot scale to the size of the datasets from the current pandemic.

View Article and Find Full Text PDF

Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies, which enables reconstruction of the origin and subsequent geographic spread of pathogens. Such inference is, however, potentially affected by geographic sampling bias. Here, we investigated the impact of sampling bias on the spatiotemporal reconstruction of viral epidemics using Bayesian discrete phylogeographic models and explored different operational strategies to mitigate this impact.

View Article and Find Full Text PDF

We investigated the relationship between age and body length, and age at sexual maturity of individuals stranded along the Italian coast. Our molecular analysis shows that all our samples belong to the C.001.

View Article and Find Full Text PDF

Nanopore sequencers can select which DNA molecules to sequence, rejecting a molecule after analysis of a small initial part. Currently, selection is based on predetermined regions of interest that remain constant throughout an experiment. Sequencing efforts, thus, cannot be re-focused on molecules likely contributing most to experimental success.

View Article and Find Full Text PDF

The Mediterranean Sea hosts a population of fin whale (), the only species of Mysticete regularly occurring in the basin. Observed and inferred mortality suggests that the population is likely declining. Accordingly, understanding the causes of mortality and assessing the health status is pivotal to the survival of this endangered population.

View Article and Find Full Text PDF

Accurate simulation of complex biological processes is an essential component of developing and validating new technologies and inference approaches. As an effort to help contain the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced from most regions in the world. More than 5.

View Article and Find Full Text PDF

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages.

View Article and Find Full Text PDF

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 datasets do not fit this mould.

View Article and Find Full Text PDF

Sequence simulators are fundamental tools in bioinformatics, as they allow us to test data processing and inference tools, and are an essential component of some inference methods. The ongoing surge in available sequence data is however testing the limits of our bioinformatics software. One example is the large number of SARS-CoV-2 genomes available, which are beyond the processing power of many methods, and simulating such large datasets is also proving difficult.

View Article and Find Full Text PDF

Phylogenetics plays a crucial role in the interpretation of genomic data. Phylogenetic analyses of SARS-CoV-2 genomes have allowed the detailed study of the virus's origins, of its international and local spread, and of the emergence and reproductive success of new variants, among many applications. These analyses have been enabled by the unparalleled volumes of genome sequence data generated and employed to study and help contain the pandemic.

View Article and Find Full Text PDF

Statistical phylogeography provides useful tools to characterize and quantify the spread of organisms during the course of evolution. Analyzing georeferenced genetic data often relies on the assumption that samples are preferentially collected in densely populated areas of the habitat. Deviation from this assumption negatively impacts the inference of the spatial and demographic dynamics.

View Article and Find Full Text PDF

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.

View Article and Find Full Text PDF

We performed a molecular and a comparative cytogenetic analysis on different Helicoidea species and a review of all the available chromosome data on the superfamily to provide an updated assessment of its karyological diversity. Standard karyotyping, banding techniques, and Fluorescence in situ hybridization of Nucleolus Organizer Region loci (NOR-FISH) were performed on fifteen species of three families: two Geomitridae, four Hygromiidae and nine Helicidae. The karyotypes of the studied species varied from 2 = 44 to 2 = 60, highlighting a high karyological diversity.

View Article and Find Full Text PDF

Studies have shown that hepatitis C virus subtype 3a (HCV-3a) is likely to have been circulating in South Asia before its global spread. However, the time and route of this dissemination remain unclear. For the first time, we generated host and virus genome-wide data for more than 500 patients infected with HCV-3a from the UK, North America, Australia, and New Zealand.

View Article and Find Full Text PDF

The vast scale of SARS-CoV-2 sequencing data has made it increasingly challenging to comprehensively analyze all available data using existing tools and file formats. To address this, we present a database of SARS-CoV-2 phylogenetic trees inferred with unrestricted public sequences, which we update daily to incorporate new sequences. Our database uses the recently proposed mutation-annotated tree (MAT) format to efficiently encode the tree with branches labeled with parsimony-inferred mutations, as well as Nextstrain clade and Pango lineage labels at clade roots.

View Article and Find Full Text PDF