Publications by authors named "Nicola La Monica"

We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein.

View Article and Find Full Text PDF

Rationale: Effective neovascularization is crucial for recovery after cardiovascular events.

Objective: Because microRNAs regulate expression of up to several hundred target genes, we set out to identify microRNAs that target genes in all pathways of the multifactorial neovascularization process. Using www.

View Article and Find Full Text PDF

Genetic vaccines are emerging as a powerful modality to induce T-cell responses to target tumor associated antigens (TAA). Viral or plasmid DNA or RNA vectors harbor an expression cassette encoding the antigen of choice delivered in vivo by vaccination. In this context, immunizations with minigenes containing selected, highly antigenic, T-cell epitopes of TAAs may have several advantages relative to full-length proteins.

View Article and Find Full Text PDF

Several cancer vaccine efforts have been directed to simultaneously cotarget multiple tumor antigens, with the intent to achieve broader immune responses and more effective control of cancer growth. Genetic cancer vaccines based on in vivo muscle electro-gene-transfer of plasmid DNA (DNA-EGT) and adenoviral vectors represent promising modalities to elicit powerful immune responses against tumor-associated antigens (TAAs) such as carcinoembryonic antigen (CEA) and human epidermal growth factor receptor-2 (HER2)/neu. Combinations of these modalities of immunization (heterologous prime-boost) can induce superior immune reactions as compared with single-modality vaccines.

View Article and Find Full Text PDF

Systemic Lupus Erythematosus is an autoimmune disease characterized by production of autoantibodies against nucleic acid-associated antigens. Endogenous DNA and RNA associated with these antigens stimulate inflammatory responses through Toll-like receptors (TLRs) and exacerbate lupus disease pathology. We have evaluated an antagonist of TLR7, 8 and 9 as a therapeutic agent in lupus-prone NZBW/F1 mice.

View Article and Find Full Text PDF

Background: DNA electroporation has been demonstrated in preclinical models to be a promising strategy to improve cancer immunity, especially when combined with other genetic vaccines in heterologous prime-boost protocols. We report the results of 2 multicenter phase 1 trials involving adult cancer patients (n=33) with stage II-IV disease.

Methods: Patients were vaccinated with V930 alone, a DNA vaccine containing equal amounts of plasmids expressing the extracellular and trans-membrane domains of human HER2, and a plasmid expressing CEA fused to the B subunit of Escherichia coli heat labile toxin (Study 1), or a heterologous prime-boost vaccination approach with V930 followed by V932, a dicistronic adenovirus subtype-6 viral vector vaccine coding for the same antigens (Study 2).

View Article and Find Full Text PDF

Oligonucleotides containing an immune-stimulatory motif and an immune-regulatory motif act as antagonists of Toll-like receptor (TLR)7 and TLR9. In the present study, we designed and synthesized oligonucleotide-based antagonists of TLR7, 8 and 9 containing a 7-deaza-dG or arabino-G modification in the immune-stimulatory motif and 2'-O-methylribonucleotides as the immune-regulatory motif. We evaluated the biological properties of these novel synthetic oligoribonucleotides as antagonists of TLRs 7, 8 and 9 in murine and human cell-based assays and in vivo in mice and non-human primates.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disease that involves the induction of T-helper 1 (Th1) and T-helper 17 (Th17) cell responses and the aberrant expression of proinflammatory cytokines, including IL-1β. Copious evidence suggests that abnormal activation of Toll-like receptors (TLRs) contributes to the initiation and maintenance of psoriasis. We have evaluated an antagonist of TLR7, 8, and 9 as a therapeutic agent in an IL-23-induced psoriasis model in mice.

View Article and Find Full Text PDF

Double-stranded RNA of viral origin and enzymatically synthesized poly I:C act as agonists of TLR3 and induce immune responses. We have designed and synthesized double-stranded synthetic oligoribonucleotides (dsORNs) which act as agonists of TLR3. Each strand of dsORN contains two distinct segments, namely an alignment segment composed of a heteronucleotide sequence and an oligo inosine (I) or an oligo cytidine (C) segment.

View Article and Find Full Text PDF

Functional T-cell epitope discovery is a key process for the development of novel immunotherapies, particularly for cancer immunology. In silico epitope prediction is a common strategy to try to achieve this objective. However, this approach suffers from a significant rate of false-negative results and epitope ranking lists that often are not validated by practical experience.

View Article and Find Full Text PDF

Background & Aims: The toll-like receptor 9 (TLR9) agonist IMO-2125 is currently evaluated in clinical trials for chronic hepatitis C therapy. The aim of this study was to investigate the in vivo mode of action of a closely related compound, referred to as immunomodulatory oligonucleotide (IMO).

Methods: We analyzed the Jak-STAT pathway activation and induction of interferon-stimulated genes in the liver of wild type, interferon-α/β receptor-deficient and interferon-γ-deficient mice, after administration of IMO.

View Article and Find Full Text PDF

Objective: The role of toll-like receptors (TLRs) in vascular remodeling is well established. However, the involvement of the endosomal TLRs is unknown. Here, we study the effect of combined blocking of TLR7 and TLR9 on postinterventional remodeling and accelerated atherosclerosis.

View Article and Find Full Text PDF

Oligonucleotides are being employed for gene-silencing activity by a variety of mechanisms, including antisense, ribozyme, and siRNA. In the present studies, we designed novel oligonucleotides complementary to targeted mRNAs and studied the effect of 3'-end exposure and oligonucleotide length on gene-silencing activity. We synthesized both oligoribonucleotides (RNAs) and oligodeoxynucleotides (DNAs) with phosphorothioate backbones, consisting of two identical segments complementary to the targeted mRNA attached through their 5'-ends, thereby containing two accessible 3'-ends; these compounds are referred to as gene-silencing oligonucleotides (GSOs).

View Article and Find Full Text PDF

RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON.

View Article and Find Full Text PDF

Canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior, and response to conventional therapies. As observed in humans, the telomerase reverse transcriptase (TERT) activity is largely confined to tumor tissues and absent in the majority of normal dog tissues. Therefore, dog TERT (dTERT) can constitute a valid target for translational cancer immunotherapy.

View Article and Find Full Text PDF

Background: Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown.

View Article and Find Full Text PDF

The telomerase reverse transcriptase (TERT) is an attractive target for cancer vaccination because its expression is reactivated in most tumors. In this study, we have evaluated the ability of a genetic vaccine targeting murine TERT (mTERT) based on DNA electroporation (DNA-EP) and adenovirus serotype 6 (Ad6) to exert therapeutic effects in combination with a novel TLR9 agonist, referred to as immune modulatory oligonucleotide (IMO), as an adjuvant. IMO was administered to mice at the same time as vaccine.

View Article and Find Full Text PDF

The EphA2 receptor tyrosine kinase is overexpressed in a variety of human epithelial cancers and is a determinant of malignant cellular behavior in pancreatic adenocarcinoma cells. Moreover, it is expressed in tumor endothelium and its activation promotes angiogenesis. To better clarify the therapeutic potential of monoclonal antibodies (mAbs) directed to the EphA2 receptor, we generated a large number of mAbs by differential screening of phage-Ab libraries by oligonucleotide microarray technology and implemented a strategy for the rapid identification of antibodies with the desired properties.

View Article and Find Full Text PDF

Pet dogs represent a valuable pre-clinical model to assess the efficacy of oncology drugs. Additionally, canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior and response to conventional therapies. The telomerase reverse transcriptase (TERT) is reactivated in most of human and dog tumors.

View Article and Find Full Text PDF

The HER-2/neu oncoprotein is a promising cancer vaccine target. We describe herein a novel HLA-A2.1-restricted epitope, encompassing amino acids 657-665 (AVVGILLVV), which is naturally presented by human breast and ovarian cell lines.

View Article and Find Full Text PDF

The human telomerase reverse transcriptase (hTERT) is an attractive target for human cancer vaccination because its expression is reactivated in most human tumors. We have evaluated the ability of DNA electroporation (DNA-EP) and adenovirus serotype 6 (Ad6) to induce immune responses against hTERT in nonhuman primates (NHPs) (Macaca mulatta). Vaccination was effective in all treated animals, and the adaptive immune response remained detectable and long lasting without side effects.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-A2.1 transgenic mice (HHD) represent a valuable model to study and predict the immunogenicity of vaccines against pathogens. However, HHD mice are unsuitable for in vivo studies of cancer vaccines against human tumor-associated antigens because they lack T-cell tolerance that is key to define the potency of the treatment.

View Article and Find Full Text PDF

Purpose: Matrix metalloproteinases (MMP) are zinc-dependent endopeptidases that mediate numerous physiologic and pathologic processes, including matrix degradation, tissue remodeling, inflammation, and tumor metastasis. To develop a vaccine targeting stromal antigens expressed by cancer-associated fibroblasts, we focused on MMP11 (or stromelysin 3). MMP11 expression correlates with aggressive profile and invasiveness of different types of carcinoma.

View Article and Find Full Text PDF

Background/aims: The immunomodulatory active hepatitis C virus (HCV) has been shown to interfere with antiviral interferon (IFN) type I functions. The aim of the study was to determine whether further basic innate immunologic functions are influenced by HCV.

Methods: The acute phase response (APR) was induced in HCV transgenic (tg) mice and C57BL/6J control mice using lipopolysaccharide.

View Article and Find Full Text PDF

Background: Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved.

View Article and Find Full Text PDF