Purpose: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies.
View Article and Find Full Text PDFMethods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting.
View Article and Find Full Text PDFIn classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline.
View Article and Find Full Text PDFHuman multiple myeloma (MM) is characterized by accumulation of malignant terminally differentiated plasma cells (PCs) in the bone marrow (BM), raising the question when during maturation neoplastic transformation begins. Immunoglobulin IGHV genes carry imprints of clonal tumor history, delineating somatic hypermutation (SHM) events that generally occur in the germinal center (GC). Here, we examine MM-derived IGHV genes using massive parallel deep sequencing, comparing them with profiles in normal BM PCs.
View Article and Find Full Text PDFA functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes on individual tumor cells (mult-HCL), to raise questions as to their functional relevance. Typical mult-HCL also displays a mutated BRAF V(600)E lesion.
View Article and Find Full Text PDFMethods Mol Biol
February 2010
The tachykinins represent the largest known peptide family and are responsible for a range of pleiotropic functions in both vertebrates and invertebrates. Recent research has shown a diversity of mechanisms such as mRNA splicing, precursor processing and post-translation modification that can lead to a complex and continually expanding repertoire of tachykinin peptides. The peptidomic analysis of the tachykinins has been hindered by the lack of specific methodologies to capture, purify and characterise each tachykinin.
View Article and Find Full Text PDFThe tachykinin neurokinin B which is encoded on the tachykinin 3 precursor, has prominent roles in both neuronal and endocrine systems, yet little is known about its evolution, potential splice variants and the manner in which it is processed. Here, we deduce the diversity within the vertebrate tachykinin 3 precursors, and identify novel tachykinin 3 splice variants and precursors. A total of 35 different tachykinin 3 precursors were identified in mammals, birds and reptiles.
View Article and Find Full Text PDFClin Lymphoma Myeloma
March 2009