Publications by authors named "Nicola J Corbett"

Alzheimer's disease (AD) is characterised by the aggregation and deposition of amyloid-β (Aβ) peptides in the human brain. In age-related late-onset AD, deficient degradation and clearance, rather than enhanced production, of Aβ contributes to disease pathology. In the present study, we assessed the contribution of the two key Aβ-degrading zinc metalloproteases, insulin-degrading enzyme (IDE) and neprilysin (NEP), to Aβ degradation in human induced pluripotent stem cell (iPSC)-derived cortical neurons.

View Article and Find Full Text PDF

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Healthy brain function relies on various signaling pathways facilitated by extracellular vesicles (EVs), which are diverse in size and content.
  • Researchers isolated EVs from human induced pluripotent stem cell-derived neurons and analyzed their mRNA and protein content using advanced techniques like electron microscopy.
  • The study identified important molecules in EVs that influence cellular interactions and signaling pathways, suggesting these vesicles play a crucial role in neuronal communication and development.
View Article and Find Full Text PDF

Brain extracellular matrix (ECM) is complex, heterogeneous and often poorly replicated in traditional 2D cell culture systems. The development of more physiologically relevant 3D cell models capable of emulating the native ECM is of paramount importance for the study of human induced pluripotent stem cell (iPSC)-derived neurons. Due to its structural similarity with hyaluronic acid, a primary component of brain ECM, alginate is a potential biomaterial for 3D cell culture systems.

View Article and Find Full Text PDF

The cellular prion protein (PrP) is a key neuronal receptor for β-amyloid oligomers (AβO), mediating their neurotoxicity, which contributes to the neurodegeneration in Alzheimer's disease (AD). Similarly to the amyloid precursor protein (APP), PrP is proteolytically cleaved from the cell surface by a disintegrin and metalloprotease, ADAM10. We hypothesized that ADAM10-modulated PrP shedding would alter the cellular binding and cytotoxicity of AβO.

View Article and Find Full Text PDF

The "amyloidogenic" proteolytic processing of the cell surface amyloid precursor protein (APP) produces amyloid-β, which causes a range of detrimental effects in the neuron, such as synaptic loss, and plays a key role in Alzheimer's disease. In contrast, "non-amyloidogenic" proteolytic processing, which involves the cleavage of APP by α-secretase, produces soluble amyloid precursor protein α (sAPPα) and is the most predominant proteolytic processing of APP in the healthy brain. Current research suggests that sAPPα plays a role in synaptic growth and plasticity, but whether this role is protective or detrimental is age-dependent.

View Article and Find Full Text PDF

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons.

View Article and Find Full Text PDF

With predictions showing that 131.5 million people worldwide will be living with dementia by 2050, an understanding of the molecular mechanisms underpinning disease is crucial in the hunt for novel therapeutics and for biomarkers to detect disease early and/or monitor disease progression. The metabolism of the microtubule-associated protein tau is altered in different dementias, the so-called tauopathies.

View Article and Find Full Text PDF

Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders.

View Article and Find Full Text PDF

Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35) injection into the right lateral ventricle of the young adult rat brain.

View Article and Find Full Text PDF

The microRNA-183/96/182 cluster is highly expressed in the retina and other sensory organs. To uncover its in vivo functions in the retina, we generated a knockout mouse model, designated "miR-183C(GT/GT)," using a gene-trap embryonic stem cell clone. We provide evidence that inactivation of the cluster results in early-onset and progressive synaptic defects of the photoreceptors, leading to abnormalities of scotopic and photopic electroretinograms with decreased b-wave amplitude as the primary defect and progressive retinal degeneration.

View Article and Find Full Text PDF