Publications by authors named "Nicola Ivan Giannoccaro"

Rural pipelines dedicated to water distribution, that is, waterworks, are essential for agriculture, notably plantations and greenhouse cultivation. Water is a primary resource for agriculture, and its optimized management is a key aspect. Saving water dispersion is not only an economic problem but also an environmental one.

View Article and Find Full Text PDF

The huge spreading of Internet of things (IoT)-oriented modern technologies is revolutionizing all fields of human activities, leading several benefits and allowing to strongly optimize classic productive processes. The agriculture field is also affected by these technological advances, resulting in better water and fertilizers' usage and so huge improvements of both quality and yield of the crops. In this manuscript, the development of an IoT-based smart traceability and farm management system is described, which calibrates the irrigations and fertigation operations as a function of crop typology, growth phase, soil and environment parameters and weather information; a suitable software architecture was developed to support the system decision-making process, also based on data collected on-field by a properly designed solar-powered wireless sensor network (WSN).

View Article and Find Full Text PDF

In this paper, a non-destructive technique based on the monitoring of the environmental vibrations of two strategic buildings by positioning accelerometers in well-defined points was used for fixing their dynamic behavior. The accelerometers measurements were elaborated through Operational Modal Analysis (OMA) techniques, in order to identify natural frequencies, damping coefficients, and modal shapes of the structure. Once these parameters have been determined, a numerical model calibrated on the identified frequencies and verified on the corresponding mode shapes was created for each building.

View Article and Find Full Text PDF

In this paper, the authors have developed a new method for reconstructing the boundary walls of a room environment by using a mechatronic device consisting of four ultrasonic sensors rotated by a servo modular actuator. This scanning system allows to measure the times of flight in each motor position so as to explore the surrounding space detecting reflections from the boundary walls and from other static obstacles. In addition to undesired reflections, due to non-target obstacles interposed between the sensors and the target surfaces, several spurious times are observed at the corners because of multiple reflections.

View Article and Find Full Text PDF