The greatly increased use of aquatic species to study disease over the past 20 years necessitates understanding their husbandry and housing requirements to optimize research and welfare and to ensure compliance with regulations. To achieve these goals, aquatic systems have expanded from pet shop and home aquaria to research-grade systems incorporating designs and features to increase their robustness, practicality, and flexibility. Moreover, these last decades have seen the increasing use of aquatic animals for infectious disease research using containment level 2 (CL2)/biosafety level 2 pathogens.
View Article and Find Full Text PDFThe use of early-stage zebrafish for biomedical research spans early organogenesis to free-swimming larva. A key benefit of this model organism is that repeated assessments spanning several days can be performed of individual larvae within a single experiment, often in conjunction with administered drugs. However, the initiation of feeding, typically at 5 days postfertilization (dpf), can make serial assessments challenging.
View Article and Find Full Text PDFManaging the welfare of laboratory animals is critical to animal health, vital in the understanding of phenotypes created by treatment or genetic alteration and ensures compliance of regulations. Part of an animal welfare assessment is the requirement to record observations, ensuring all those responsible for the animals are aware of their health status and can act accordingly. Although the use of zebrafish in research continues to increase, guidelines for conducting welfare assessments and the reporting of observations are considered unclear compared to mammalian species.
View Article and Find Full Text PDFMany facilities house fish in separate static containers post-procedure, for example, while awaiting genotyping results. This ensures fish can be easily identified, but it does not allow for provision of continuous filtered water or diet. At the Wellcome Trust Sanger Institute, concern over the housing conditions led to the development of an individual housing system (GeneS) enabling feeding and water filtration.
View Article and Find Full Text PDFObjectives: To discover if intensive monitoring of wrist extension would produce consistent recovery curves during the subacute period, and whether any impact of additional physiotherapy could be detected. We also investigated improved approaches to statistical analysis in single-case experiments.
Design: A randomized multiple-baseline experiment with very frequent assessment.