The performance of organic photodetectors (OPDs) using conjugated polymer donors and molecular acceptors has improved rapidly, but many polymers are difficult to upscale due to their complex structures. This study examines two low-complexity thiophene copolymers with substituted benzooxadiazole () or benzothiadiazole (). Substituting sulfur with oxygen in increased its ionization energy without affecting the optical gap.
View Article and Find Full Text PDFAs reserves of non-renewable energy sources decline, the search for sustainable alternatives becomes increasingly critical. Next-generation energy materials play a key role in this quest by enabling the manipulation of properties for effective energy solutions and understanding interfaces to enhance energy yield. Studying these interfaces is essential for managing charge transport in optoelectronic devices, yet it presents significant challenges.
View Article and Find Full Text PDFPerovskite photodetectors, devices that convert light to electricity, require good extraction and low noise levels to maximize the signal-to-noise ratio. Self-assembling monolayers (SAMs) have been shown to be effective hole transport materials thanks to their atomic layer thickness, transparency, and energetic alignment with the valence band of the perovskite. While efforts are being made to reduce noise levels via the active layer, little has been done to reduce noise via SAM interfacial engineering.
View Article and Find Full Text PDFLead halide perovskite and organic semiconductors are promising classes of materials for photodetector (PD) applications. State-of-the-art perovskite PDs have performance metrics exceeding silicon PDs in the visible. While organic semiconductors offer bandgap tunability due to their chemical design with detection extended into the near-infrared (NIR), perovskites are limited to the visible band and the first fraction of the NIR spectrum.
View Article and Find Full Text PDFAs the rise of nonfullerene acceptors (NFA) has allowed lab-scale organic solar cells (OSC) to reach 20% efficiency, translating these devices into roll-to-roll compatible fabrication still poses many challenges for researchers. Among these are the use of green solvent solubility for large-scale manufacture, roll-to-roll compatible fabrication, and, not least, information on charge carrier dynamics in each upscaling step, to further understand the gap in performance. In this work, the reproducibility of champion devices using slot-die coating with 14% power conversion efficiency (PCE) is demonstrated, under the condition that the optimal thickness is maintained.
View Article and Find Full Text PDFIn this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (-80 DÅ), which generates a 200 meV shift in molecular energetics.
View Article and Find Full Text PDFOrganic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence.
View Article and Find Full Text PDFMaterials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of -carborane as an AIE-active component in the design of NIR-emitting OSCs.
View Article and Find Full Text PDFThe unique properties of conjugated polymers (CPs) in various optoelectronic applications are mainly attributed to their different self-assembly processes and superstructures. Various methods are utilized to tune and control CP structure and properties with less attention paid to the use of chirality. CPs with main chain chirality are rare and their microscopic and macroscopic properties are still unknown.
View Article and Find Full Text PDFSolution-processable near-infrared (NIR) photodetectors are urgently needed for a wide range of next-generation electronics, including sensors, optical communications and bioimaging. However, it is rare to find photodetectors with >300 kHz cut-off frequencies, especially in the NIR region, and many of the emerging inorganic materials explored are comprised of toxic elements, such as lead. Herein, solution-processed AgBiS photodetectors with high cut-off frequencies under both white light (>1 MHz) and NIR (approaching 500 kHz) illumination are developed.
View Article and Find Full Text PDFConventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e.
View Article and Find Full Text PDFRecent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity.
View Article and Find Full Text PDFThe dramatic improvement of the PCE (power conversion efficiency) of organic photovoltaic devices in the past few years has been driven by the development of new polymer donor materials and non-fullerene acceptors (NFAs). In the design of such materials synthetic scalability is often not considered, and hence complicated synthetic protocols are typical for high-performing materials. Here we report an approach to readily introduce a variety of solubilizing groups into a benzo[][1,2,5]thiadiazole acceptor comonomer.
View Article and Find Full Text PDFEmergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in -type enhancement mode OECTs.
View Article and Find Full Text PDFHydrogels have entered the spotlight for applications in soft electronics. It is essential and challenging to obtain hydrogels that can function properly under varying environmental circumstances, that is, 30-90% relative humidity (RH) and -20 to 40 °C due to their intrinsic nature to lose and absorb water upon variations in humidity and temperature. In this work, a green solvent, solketal, is introduced into poly 3-dimethyl-2-(2-methylprop-2-enoyloxy)ethyl azaniumyl propane-1-sulfonate (poly(DMAPS)) zwitterionic hydrogels.
View Article and Find Full Text PDFBimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing.
View Article and Find Full Text PDFJ Mater Chem C Mater
November 2022
[This corrects the article DOI: 10.1039/D2TC01224C.].
View Article and Find Full Text PDFHere, we report photonic nanostructures replicated from the adaxial epidermis of flower petals onto light-polymerized coatings using low-cost nanoimprint lithography at ambient temperature. These multifunctional nanocoatings are applied to confer enhanced light trapping, water repellence, and UV light and environmental moisture protection features in perovskite solar cells. The former feature helps attain a maximum power conversion efficiency of 24.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Organic materials combining high electron affinity with strong absorption in the visible spectrum are of interest for photodetector applications. In this study, we report two such molecular semiconductors, based upon an acceptor-donor-acceptor (A-D-A) approach. Coupling of an acceptor end group, 2,1,3-benzothiadiazole-4,5,6-tricarbonitrile (TCNBT), with a donor cyclopentadithiophene core affords materials with a band gap of 1.
View Article and Find Full Text PDFJ Mater Chem C Mater
July 2022
Circularly polarised light will revolutionise emerging technologies, including encrypted light-based communications, quantum computing, bioimaging and multi-channel data processing. In order to make use of these remarkable opportunities, high performance photodetectors that can accurately differentiate between left- and right-handed circularly polarised light are desperately needed. Whilst this potential has resulted in considerable research interest in chiral materials and circularly polarised photodetecting devices, their translation into real-world technologies is limited by non-standardised reporting and testing protocols.
View Article and Find Full Text PDFOwing to their unique porosity and large surface area, porous organic polymers (POPs) have shown their presence in numerous novel applications. The tunability and functionality of both the pores and backbone of the material enable its suitability in photovoltaic devices. The porosity induced host-guest configurations as well as periodic donor-acceptor structures benefit the charge separation and charge transfer in photophysical processes.
View Article and Find Full Text PDF