The accurate reconstruction of genome-scale metabolic models (GEMs) for unculturable species poses challenges due to the incomplete and fragmented genetic information typical of metagenome-assembled genomes (MAGs). While existing tools leverage sequence homology from single genomes, this study introduces pan-Draft, a pan-reactome-based approach exploiting recurrent genetic evidence to determine the solid core structure of species-level GEMs. By comparing MAGs clustered at the species-level, pan-Draft addresses the issues due to the incompleteness and contamination of individual genomes, providing high-quality draft models and an accessory reactions catalog supporting the gapfilling step.
View Article and Find Full Text PDFAdded-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C.
View Article and Find Full Text PDFBackground: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO) methanation is frequently performed by microbiota attached to solid supports generating biofilms.
View Article and Find Full Text PDFPlastic pollution is becoming an emerging environmental issue due to inappropriate disposal at the end of the materials life cycle. When plastics are released, they undergo physical and chemical corrosion, leading to the formation of small particles, commonly referred to as microplastics. In this study, a microbial community derived from the leachate of a bioreactor containing a mixture of soil and plastic collected during a landfill mining process underwent an enrichment protocol in order to select the microbial species specifically involved in plastic degradation.
View Article and Find Full Text PDFNatural yeast with superior fermentative traits can serve as a platform for the development of recombinant strains that can be used to improve the sustainability of bioethanol production from starch. This process will benefit from a consolidated bioprocessing (CBP) approach where an engineered strain producing amylases directly converts starch into ethanol. The yeast L20, previously selected as outperforming the benchmark yeast Ethanol Red, was here subjected to a comparative genomic investigation using a dataset of industrial strains.
View Article and Find Full Text PDFSaccharomyces cerevisiae has long been part of human activities related to the production of food and wine. The industrial demand for fermented beverages with well-defined and stable characteristics boosted the isolation and selection of strains conferring a distinctive aroma profile to the final product. To uncover variants characterizing oenological strains, the sequencing of 65 new S.
View Article and Find Full Text PDF