Publications by authors named "Nicola Da Roit"

Hydrogen generation in electrostatically stabilized, aqueous organic nanoparticle dispersions is investigated. For this purpose, organic nanoparticle dispersions are synthesized in water by nanoprecipitation from tetrahydrofuran and stabilized by charging through strong molecular electron acceptors. The dispersions are stable for more than 10 weeks on the shelf and during the photocatalytic process, despite the continuous transfer of charges between the reactants.

View Article and Find Full Text PDF

Subnanometer clusters with precise atom numbers hold immense potential for applications in catalysis, as single atoms can significantly impact catalytic properties. Typically, inorganic clusters are produced using batch processes with high dilutions, making the scale-up of these processes time-consuming and its reproducibility challenging. While continuous-flow systems have been employed for organic synthesis and, more recently, nanoparticle preparation, these approaches have only rarely been applied to cluster synthesis.

View Article and Find Full Text PDF

The triplet states populated under illumination in the monomeric light-harvesting complex II (LHCII) were analyzed by EPR and Optically Detected Magnetic Resonance (ODMR) in order to fully characterize the perturbations introduced by site-directed mutations leading to the removal of key chlorophylls. We considered the A2 and A5 mutants, lacking Chls a612(a611) and Chl a603 respectively, since these Chls have been proposed as the sites of formation of triplet states which are subsequently quenched by the luteins. Chls a612 and Chl a603 belong to the two clusters determining the low energy exciton states in the complex.

View Article and Find Full Text PDF