Publications by authors named "Nicola D'Antona"

Iodine is a vital microelement and a powerful antiseptic with a rapid and broad spectrum of action. The development of iodophor compounds to improve the solubility and stability of iodine is still challenging. Here, we report the synthesis of a novel cationic β-cyclodextrin bearing a choline-like pendant (β-CD-Chol) designed to complex and deliver iodine to bacterial cells.

View Article and Find Full Text PDF

The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through acid hydrolysis of OPW was used as a substrate in the cultivation of the marine microalgae .

View Article and Find Full Text PDF

A hydrophobic calix[4]arene derivative was investigated for its iodine (I) capture efficiency from gaseous and liquid phase. The iodine uptake was followed by UV-vis spectroscopy. Additionally, the influence of the calix[4]arene derivative-polyolefin system on the leaching of iodine through packaging from a povidone-iodine-based (PVP-I) formulation was evaluated.

View Article and Find Full Text PDF

Povidone iodine (PVPI) is an antiseptic widely used against a broad spectrum of pathogens. However, undesired side-effects are still associated with PVPI treatment due to the irritant effect of iodine. Reducing the concentration of a PVPI formulation could provide safer and more friendly formulations, for routine use and applications in very delicate organs such as the eye.

View Article and Find Full Text PDF

The co-delivery of anticancer drugs into tumor cells by a nanocarrier may provide a new paradigm in chemotherapy. Temozolomide and curcumin are anticancer drugs with a synergistic effect in the treatment of multiform glioblastoma. In this study, the entrapment and co-entrapment of temozolomide and curcumin in a -sulfonato-calix[4]arene nanoparticle was investigated by NMR spectroscopy, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering.

View Article and Find Full Text PDF

The valorization of food wastes is a challenging opportunity for a green, sustainable, and competitive development of industry. Approximately 30 million m of olive mill wastewater (OMWW) are produced annually in the world as a by-product of the olive oil extraction process. In addition to being a serious environmental and economic issue because of their polluting load, OMWW can also represent a precious resource of high-added-value molecules such as polyphenols that show acclaimed antioxidant and anti-inflammatory activities and can find useful applications in the pharmaceutical industry.

View Article and Find Full Text PDF

Nowadays, agro-food by-products represent a potential low-cost source of biologically active ingredients which have been paid significant attention as nutraceuticals, medicine, food and cosmetics. In a previous study we evaluated the total sugars, metals and polyphenols of olive mill wastewater (OMWW) from a Cerasuola olive cultivar. In the present work we selectively recovered a sugar and mineral enriched fraction (SMEF) from Cerasuola OMWW by a green adsorption/desorption process.

View Article and Find Full Text PDF

Flavonoids are constituents of the human diet (they are present in many beverages and food), and in organisms they are responsible for several biological functions, including that of antioxidant. Because of the increasing interest in these molecules, methods for their synthesis and structural modification are of great importance; studies on the biological activities of many of these compounds are insufficient because of their scarcity and/or high cost. We have developed an expeditious synthesis of polyoxygenated flavones, starting from available and inexpensive flavanones, using a bromination-methoxylation procedure.

View Article and Find Full Text PDF

Chloroperoxidase from Caldariomyces fumago catalyses the oxidation of 1,2-dihydronaphthalene to (1R,2R)-(+)-dihydroxytetrahydronaphthalene in homogenous citrate buffer/ionic liquid mixtures, using t-butyl hydroperoxide as O2 donor. It tolerates up to 30 (v/v) 1,3-dimethylimidazolium methylsulfate or 1-butyl-3-methylimidazolium methylsulfate. The enzyme activity in these ionic liquid co-solvent systems is retained for 24 h, but it falls to 3 h using non-ionic organic solvents such as t-BuOH or acetone.

View Article and Find Full Text PDF

A combination of different lipases from Pseudomonas cepacia, Candida antarctica B, Candida rugosa and Mucor miehei, aided the regioesterification of the free fructose allowing the synthesis of 1,6-di-O-acetyl-D-fructofuranose, 1,4,6-tri-O-acetyl-D-fructofuranose, 1,6-di-O-acetyl-4-O-benzoyl-D-fructofuranose and 1,6-di-O-benzoyl-D-fructofuranose. Using C. antarctica B and C.

View Article and Find Full Text PDF

Lipases from Candida antarctica and from Mucor miehei efficiently catalyze the enantioselective esterification of rac-1-(3-trifluoromethylphenyl)propan-2-ol. The obtained enantioforms are suitable to prepare both enantiomers of fenfluramine.

View Article and Find Full Text PDF