Publications by authors named "Nicola Cesari"

Article Synopsis
  • - Researchers developed new ALK5 inhibitors aimed at treating diseases like cancer and fibrosis, focusing on a specific chemical structure called a 4,6-disubstituted pyridazine core.
  • - They used a method called "scaffold-hopping" to explore different chemical frameworks and found a particularly effective compound that was enhanced for inhalation, reducing the risk of side effects.
  • - The optimized ALK5 inhibitors demonstrated improved effectiveness and properties for lung retention, suggesting they could be good candidates for creating new inhaled treatment options.
View Article and Find Full Text PDF

Clinical guidelines for COPD and asthma recommend inhaled β-adrenergic agonists, muscarinic antagonists, and, for frequent exacerbators, inhaled corticosteroids, with the challenge of combining them into a single device. The MABA (muscarinic antagonist and β agonist) concept has the potential to simplify this complexity while increasing the efficacy of both pharmacologies. In this article, we report the outcome of our solid-state driven back-up program that led to the discovery of the MABA compound .

View Article and Find Full Text PDF

The development of molecules embedding two distinct pharmacophores acting as muscarinic antagonists and β agonists (MABAs) promises to be an excellent opportunity to reduce formulation issues and boost efficacy through cross-talk and allosteric interactions. Herein, we report the results of our drug discovery campaign aimed at improving the therapeutic index of a previous MABA series by exploiting the super soft-drug concept. The incorporation of a metabolic liability, stable at the site of administration but undergoing rapid systemic metabolism, to generate poorly active and quickly eliminated fragments was pursued.

View Article and Find Full Text PDF

Orally inhaled products (OIPs) are gaining increased attention, as pulmonary delivery is a preferred route for the treatment of various diseases. Yet, the field of inhalation biopharmaceutics is still in development phase. For a successful correlation between various in vitro data obtained during formulation characterization and in vivo performance, it is necessary to understand the impact of parameters such as solubility and dissolution of drugs.

View Article and Find Full Text PDF

The targeting of both the muscarinic and β-adrenergic pathways is a well validated therapeutic approach for the treatment of chronic obstructive pulmonary disease (COPD). In this communication we report our effort to incorporate two pharmacologies into a single chemical entity, whose characteristic must be suitable for a once daily inhaled administration. Contextually, we aimed at a locally acting therapy with limited systemic absorption to minimize side effects.

View Article and Find Full Text PDF

In recent years, global sensitivity analysis (GSA) has gained interest in physiologically based pharmacokinetics (PBPK) modelling and simulation from pharmaceutical industry, regulatory authorities, and academia. With the case study of an in-house PBPK model for inhaled compounds in rats, the aim of this work is to show how GSA can contribute in PBPK model development and daily use. We identified two types of GSA that differ in the aims and, thus, in the parameter variability: inter-compound and intra-compound GSA.

View Article and Find Full Text PDF

Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application.

View Article and Find Full Text PDF

The interest in using physiologically-based pharmacokinetic (PBPK) models as a support to the drug development decision making process has rapidly increased in the last years. These kind of models are examples of the "bottom up" modelling strategy, which progressively integrates into a mechanistic framework different information as soon as they become available along the drug development. For this reason PBPK models can be used with different aims, from the early stages of drug development up to the clinical phases.

View Article and Find Full Text PDF

Studies on the role of Rho-associated protein kinase (ROCK) in experimental pulmonary artery hypertension (PAH) relies mainly on the use of pharmacological inhibitors. However, interpreting these data is hampered by the lack of specificity of commonly utilized inhibitors. To fill this gap, we have selected and characterized a novel ROCK inhibitor, Compound 3, previously described in a patent.

View Article and Find Full Text PDF

Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated.

View Article and Find Full Text PDF

The importance of evaluating drug metabolism and pharmacokinetic (DMPK) properties very early in the drug discovery process in order to reduce attrition during development is now well recognised. In this paper we illustrate an approach for PK screening that provides a range of parameters that would not be available from conventional PK profiling. In combination with an assessment of physicochemical and in vitro properties, the in vivo PK protocol described provides better mechanistic understanding of the PK behaviour of a compound or class of compounds.

View Article and Find Full Text PDF

Amphetamines are a group of sympathomimetic drugs that exhibit strong central nervous system stimulant effects. D-Amphetamine ((+)-alpha-methylphenetylamine) is the parent drug in this class to which all others are structurally related. In drug discovery, d-amphetamine is extensively used either for the exploration of novel mechanisms involving the catecholaminergic system, or for the validation of new behavioural animal models.

View Article and Find Full Text PDF