Objectives: To investigate the safety and immunogenicity of a booster BCG vaccination delivered intradermally in healthy, BCG vaccinated subjects and to compare with a previous clinical trial where BCG vaccinated subjects were boosted with a new TB vaccine, MVA85A.
Design: Phase I open label observational trial, in the UK. Healthy, HIV-negative, BCG vaccinated adults were recruited and vaccinated with BCG.
In clinical trials recombinant-modified vaccinia virus Ankara expressing the Mycobacterium tuberculosis antigen 85A (MVA85A) induces approximately 10 times more effector T cells than any other recombinant MVA vaccine. We have found that in BCG primed subjects MVA85A vaccination reduces transforming growth factor beta 1 (TGF-beta1) mRNA in peripheral blood lymphocytes and reduces TGF-beta1 protein in the serum, but increases IFN-gamma ELISPOT responses to the recall antigen SK/SD. TGF-beta1 is essential for the generation of regulatory T cells and we see a correlation across vaccinees between CD4+CD25hiFoxP3+ cells and TGF-beta1 serum levels.
View Article and Find Full Text PDFObjectives: To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination.
Design: There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naïve adults.
In the search for effective vaccines against intracellular pathogens such as HIV, tuberculosis and malaria, recombinant viral vectors are increasingly being used to boost previously primed T cell responses. Published data have shown prime-boost vaccination with BCG-MVA85A (modified vaccinia virus Ankara expressing antigen 85A) to be highly immunogenic in humans as measured by ex vivo IFN-gamma ELISPOT. Here, we used polychromatic flow cytometry to investigate the phenotypic and functional profile of these vaccine-induced Mycobacterium tuberculosis (M.
View Article and Find Full Text PDF