Intracellular trafficking of secretory proteins plays key roles in animal development and physiology, but so far, tools for investigating the dynamics of membrane trafficking have been limited to cultured cells. Here, we present a system that enables acute manipulation and real-time visualization of membrane trafficking through the reversible retention of proteins in the endoplasmic reticulum (ER) in living multicellular organisms. By adapting the "retention using selective hooks" (RUSH) approach to Drosophila, we show that trafficking of GPI-linked, secreted, and transmembrane proteins can be controlled with high temporal precision in intact animals and cultured organs.
View Article and Find Full Text PDFE-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis.
View Article and Find Full Text PDFDegradation of endocytosed proteins involves the formation of transient connections between late endosomes and lysosomes in a process called "kiss and run." Genes and proteins controlling this mechanism are unknown. Here, we identify the small guanosine triphosphatase (GTPase) RabX1 as an organizer of a late endosomal compartment that forms dynamic tubular connections to lysosomes.
View Article and Find Full Text PDFCytoplasmic dynein-1 is a large minus-end-directed microtubule motor complex involved in membrane trafficking, organelle positioning, and microtubule organization. The roles of dynein light intermediate chains (DLICs; DLIC1 and DLIC2) within the complex are, however, still largely undefined. In this study, we investigated the possible roles of DLICs in epithelial homeostasis and colon cancer development.
View Article and Find Full Text PDFE-cadherin localization to the zonula adherens is fundamental for epithelial differentiation but the mechanisms controlling localization are unclear. Using the Drosophila follicular epithelium we genetically dissect E-cadherin transport in an in vivo model. We distinguish three mechanisms mediating E-cadherin accumulation at the zonula adherens.
View Article and Find Full Text PDFThe Drosophila oogenesis system provides an excellent model to study the development of epithelial tissues. Here, we report the first genome-scale in vivo RNA interference (RNAi) screen for genes controlling epithelial development. By directly analysing cell and tissue architecture we identified 1125 genes, which we assigned to seven different functions in epithelial formation and homeostasis.
View Article and Find Full Text PDFThe constantly growing number of genetic tools rapidly increases possibilities for various screens in different model organisms and calls for new methods facilitating screen performance. In particular, screening procedures involving fixation and staining of samples are difficult to perform at a genome-wide scale. The time-consuming task to generate these samples makes such screens less attractive.
View Article and Find Full Text PDFT-domain transcription factors are involved in many different processes during embryogenesis, such as mesoderm, heart or gut development in vertebrates and in invertebrates. In insects, the following five types of T-box genes are known: brachyenteron (byn), optomotor-blind (omb), optomotor-blind-related-gene-1 (org-1), dorsocross (doc) and H15. As all these classes are present in the genome of the fruit fly Drosophila melanogaster and the flour beetle Tribolium, the multiplicity of the five types of genes varies from dipterans to the beetle.
View Article and Find Full Text PDFTribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes.
View Article and Find Full Text PDFBackground: In the long-germ insect Drosophila, a single extraembryonic membrane, the amnioserosa, covers the embryo at the dorsal side. In ancestral short-germ insects, an inner membrane, the amnion, covers the embryo ventrally, and an outer membrane, the serosa, completely surrounds the embryo. An early differentiation step partitions the uniform blastoderm into the anterior-dorsal serosa and the posterior-ventral germ rudiment giving rise to amnion and embryo proper.
View Article and Find Full Text PDF