Soft robots are envisioned as the next generation of safe biomedical devices in minimally invasive procedures. Yet, the difficulty of processing soft materials currently limits the size, aspect-ratio, manufacturing throughput, as well as, the design complexity and hence capabilities of soft robots. Multi-material thermal drawing is introduced as a material and processing platform to create soft robotic fibers imparted with multiple actuations and sensing modalities.
View Article and Find Full Text PDFFibers that harvest mechanical energy via the triboelectric effect are excellent candidates as power sources for wearable electronics and functional textiles. Thus far however, their fabrication remains complex, and exhibited performances are below the state-of-the-art of 2D planar configurations, making them impractical. Here, we demonstrate the scalable fabrication of micro-structured stretchable triboelectric fibers with efficiencies on par with planar systems.
View Article and Find Full Text PDFElectronic and photonic fiber devices that can sustain large elastic deformation are becoming key components in a variety of fields ranging from healthcare to robotics and wearable devices. The fabrication of highly elastic and functional fibers remains however challenging, which is limiting their technological developments. Simple and scalable fiber-processing techniques to continuously codraw different materials within a polymeric structure constitute an ideal platform to realize functional fibers and devices.
View Article and Find Full Text PDF