The catalytic transformation of C-H to C-N bonds offers rapid access to fine chemicals and high-performance materials, but achieving high selectivity from undirected aminations of unactivated C(sp)-H bonds remains an outstanding challenge. We report the origins of the reactivity and selectivity of a Cu-catalyzed C-H amidation of simple alkanes. Using a combination of experimental and computational mechanistic studies and energy decomposition techniques, we uncover a switch in mechanism from inner-sphere to outer-sphere coupling between alkyl radicals and the active Cu(II) catalyst with increasing substitution of the alkyl radical.
View Article and Find Full Text PDFFunctional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents.
View Article and Find Full Text PDFPolyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition.
View Article and Find Full Text PDFThe conversion of polyolefins to monomers would create a valuable carbon feedstock from the largest fraction of waste plastic. However, breakdown of the main chains in these polymers requires the cleavage of carbon-carbon bonds that tend to resist selective chemical transformations. Here, we report the production of propylene by partial dehydrogenation of polyethylene and tandem isomerizing ethenolysis of the desaturated chain.
View Article and Find Full Text PDFWe report a dehydroboration process that can be coupled with chain-walking hydroboration to create a one-pot, contra-thermodynamic, short- or long-range isomerization of internal olefins to terminal olefins. This dehydroboration occurs by a sequence comprising activation with a nucleophile, iodination, and base-promoted elimination. The isomerization proceeds at room temperature without the need for a fluoride base, and the substrate scope of this isomerization is expanded over those of previous isomerizations we have reported with silanes.
View Article and Find Full Text PDF