The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFParacetamol (acetaminophen, APAP) overdose is a leading cause of acute drug-induced liver failure. APAP hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is inactivated by conjugation with glutathione (GSH) to APAP-GSH, which is further converted into its cysteine derivative APAP-CYS.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFTheoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.
View Article and Find Full Text PDFBinding free energy (Δ) computation can play an important role in prioritizing compounds to be evaluated experimentally on their affinity for target proteins, yet fast and accurate Δ calculation remains an elusive task. In this study, we compare the performance of two popular end-point methods, i.e.
View Article and Find Full Text PDFBackground And Purpose: The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells.
Experimental Approach: The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors.
Key Results: Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8.
Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome.
View Article and Find Full Text PDFIn yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases.
View Article and Find Full Text PDFThe 5'-hydroxymethyl metabolite of the penicillin based antibiotic flucloxacillin (FLX) is considered to be involved in bile duct damage occurring in a small number of patients. Because 5'-hydroxymethyl FLX is difficult to obtain by organic synthesis, biosynthesis using highly active and regioselective biocatalysts would be an alternative approach. By screening an in-house library of Cytochrome P450 (CYP) BM3 mutants, mutant M11 L437E was identified as a regioselective enzyme with relatively high activity in production of 5'-hydroxymethyl FLX as was confirmed by mass spectrometry and NMR.
View Article and Find Full Text PDFFormation of the reactive amodiaquine quinoneimine (AQ-QI) and -desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human construct were utilized to investigate the protective effect of GSTP1 in a cellular context.
View Article and Find Full Text PDFHuman glutathione transferase T2-2 (GSTT2-2) is one of the enzymes considered to play a role in inactivation of toxicants and carcinogens. The expression level of this enzyme is determined by genetic and environmental factors, which may lead to differences in susceptibility. As a specific assay for GSTT2-2 so far a spectroscopical assay based on GSH-conjugation of menaphthyl sulfate (MSu) was used.
View Article and Find Full Text PDFBackground: Inter-individual variability in hepatic drug metabolizing enzyme (DME) activity is a major contributor to heterogeneity in drug clearance and safety. Accurate data on expression levels and activities of DMEs is an important prerequisite for in vitro-in vivo extrapolation and in silico based predictions. Characterization and assessment of inter-correlations of the major DMEs cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) have been extensively documented, but simultaneous quantification including other major DMEs has been lacking.
View Article and Find Full Text PDFChem Res Toxicol
February 2018
Detoxicating enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction of quinone-like compounds. The protective role of the polymorphic NQO1 and NQO2 enzymes is especially of interest in the liver as the major site of drug bioactivation to chemically reactive drug metabolites. In the current study, we quantified the concentrations of NQO1 and NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like drug metabolites.
View Article and Find Full Text PDFPost-translational protein modification by addition or removal of the small polypeptide ubiquitin is involved in a range of critical cellular processes, like proteasomal protein degradation, DNA repair, gene expression, internalization of membrane proteins, and drug sensitivity. We recently identified genes important for acetaminophen (APAP) toxicity in a comprehensive screen and our findings suggested that a small set of yeast strains carrying deletions of ubiquitin-related genes can be informative for drug toxicity profiling. In yeast, approximately 20 different deubiquitinating enzymes (DUBs) have been identified, of which only one is essential for viability.
View Article and Find Full Text PDFCYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role.
View Article and Find Full Text PDFThe use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury.
View Article and Find Full Text PDFBackground: Computational methods to predict binding affinities of small ligands toward relevant biological (off-)targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can include steric and electrostatic protein-ligand interactions, solvent effects, and thermal fluctuations, but often they are computationally demanding and require a high level of supervision.
View Article and Find Full Text PDFNat Rev Drug Discov
December 2017
The sharing of legacy preclinical safety data among pharmaceutical companies and its integration with other information sources offers unprecedented opportunities to improve the early assessment of drug safety. Here, we discuss the experience of the eTOX project, which was established through the Innovative Medicines Initiative to explore this possibility.
View Article and Find Full Text PDF