Publications by authors named "Nico Mosso"

Molecules are predicted to be chemically tunable towards high thermoelectric efficiencies and they could outperform existing materials in the field of energy conversion. However, their capabilities at the more technologically relevant temperature of 300 K are yet to be demonstrated. A possible reason could be the lack of a comprehensive technique able to measure the thermal and (thermo)electrical properties, including the role of phonon conduction.

View Article and Find Full Text PDF

Molecular junctions exhibit a rich and tunable set of thermal transport phenomena. However, the predicted high thermoelectric efficiencies, phonon quantum interference effects, rectification, and nonlinear heat transport properties of organic molecules are yet to be verified because suitable experimental techniques have been missing. Here, by combining the break junction technique with suspended heat-flux sensors with picowatt per Kelvin sensitivity, we measured the thermal and electrical conductance of single organic molecules at room temperature simultaneously.

View Article and Find Full Text PDF

Structures of the aromatic N-heterocyclic hexaazatriphenylene (HAT) molecular synthon obtained by surface-assisted self-assembly were analyzed with sub-Å resolution by means of noncontact atomic force microscopy (nc-AFM), both in the kinetically trapped amorphous state and in the thermodynamically stable crystalline phase. These results reveal how the crystallization governs the length scale of the network order for non-flexible molecular species without affecting the local bonding schemes. The capability of nc-AFM to accurately resolve structural relaxations will be highly relevant for the characterization of vitreous two-dimensional supramolecular materials.

View Article and Find Full Text PDF

Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts.

View Article and Find Full Text PDF