Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.
View Article and Find Full Text PDFSeveral human diseases, including cancer and neurodegeneration, are associated with excessive mitochondrial fragmentation. In this context, mitochondrial division inhibitor (Mdivi-1) has been tested as a therapeutic to block the fission-related protein dynamin-like protein-1 (Drp1). Recent studies suggest that Mdivi-1 interferes with mitochondrial bioenergetics and complex I function.
View Article and Find Full Text PDFPro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable.
View Article and Find Full Text PDFThe orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress.
View Article and Find Full Text PDF