Publications by authors named "Nico Lingg"

This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples.

View Article and Find Full Text PDF

Advances in affinity chromatography now make it possible to analyze immunoglobulin G from plasma and its fractions with a simple chromatographic method. Ligands derived from camelid antibodies have been developed which have affinity to all 4 subclasses of human IgG without a cross reactivity to other immunoglobulins. The commercially available Capture Select FcXL is the basis for a simple method for direct quantification of immunoglobulin G from plasma or from fractions from cold ethanol precipitation.

View Article and Find Full Text PDF
Article Synopsis
  • Secretory immunoglobulin A (sIgA) is being explored for use in therapies related to the gut, with current research focused on its purification from Chinese hamster ovary (CHO) cell cultures.
  • Researchers used aqueous two-phase systems (ATPS) in their study to purify sIgA monoclonal antibodies (mAbs), analyzing factors like pH and PEG concentration to optimize the process.
  • The results indicated that under specific conditions, sIgA mAbs predominantly ended up in the PEG phase, and the method demonstrated potential for efficient and cost-effective manufacturing of sIgA biotherapeutics.
View Article and Find Full Text PDF
Article Synopsis
  • The CASPON technology facilitates the precise removal of fusion tags from proteins to restore their original N-terminus, improving protein functionality.
  • Although the CASPON enzyme can handle various N-terminal peptides, its effectiveness drops with larger proteins.
  • Researchers have created a method using molecular dynamics simulations to predict cleavage efficiency based on N-terminal peptide conformations, aligning well with experimental results and enabling pre-assessment of CASPON's efficiency.
View Article and Find Full Text PDF

The aim of this study was the development of a scalable production process for high titer (10 pfu/mL and above) recombinant baculovirus stocks with low cell line-derived impurities for the production of virus-like particles (VLP). To achieve this, we developed a high cell density (HCD) culture for low footprint cell proliferation, compared different infection strategies at multiplicity of infection (MOI) 0.05 and 0.

View Article and Find Full Text PDF

This study presents a comprehensive investigation of the mechanistic understanding of retention and selectivity in hydrophobic interaction chromatography. It provides valuable insights into crucial method-development parameters involved in achieving chromatographic resolution for profiling molecular variants of trastuzumab. Retention characteristics have been assessed for three column chemistries, i.

View Article and Find Full Text PDF

Immobilized metal affinity chromatography (IMAC) is a powerful technique for capture and purification of relevant biopharmaceuticals in complex biological matrices. However, protein recovery can be drastically compromised due to surface induced spreading and unfolding of the analyte, leading to fouling of the stationary phase. Here, we report on the kinetics of irreversible adsorption of a protease on an IMAC resin in a time span ranging from minutes to several hours.

View Article and Find Full Text PDF

Pertuzumab is a monoclonal antibody used for the treatment of HER2-positive breast cancer in combination with trastuzumab. Charge variants of trastuzumab have been extensively described in the literature; however, little is known about the charge heterogeneity of pertuzumab. Here, changes in the ion-exchange profile of pertuzumab were evaluated by pH gradient cation-exchange chromatography after stressing it for up to 3 weeks at physiological and elevated pH and 37 °C.

View Article and Find Full Text PDF

The CASPON enzyme became an interesting enzyme for fusion protein processing because it generates an authentic N-terminus. However, the high cysteine content of the CASPON enzyme may induce aggregation via disulfide-bond formation, which can reduce enzymatic activity and be considered a critical quality attribute. Different multimerization states of the CASPON enzyme were isolated by preparative size exclusion chromatography and analyzed with respect to multimerization propensity and enzymatic activity.

View Article and Find Full Text PDF

Hydrophobic interaction chromatography (HIC) is a chromatographic technique that mainly targets the separation of biomolecules (intact proteins, monoclonal antibodies, etc.) based on the difference in surface hydrophobicity while applying non-denaturing conditions. This protocol paper provides guidelines for setting-up robust HIC analysis and considers the instrument configuration, mobile-phase and sample preparation, as well as chromatographic conditions and settings.

View Article and Find Full Text PDF

In preparative and industrial chromatography, the current viewpoint is that the dynamic binding capacity governs the process economy, and increased dynamic binding capacity and column utilization are achieved at the expense of productivity. The dynamic binding capacity in chromatography increases with residence time until it reaches a plateau, whereas productivity has an optimum. Therefore, the loading step of a chromatographic process is a balancing act between productivity, column utilization, and buffer consumption.

View Article and Find Full Text PDF

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover.

View Article and Find Full Text PDF

Fusion protein technologies to facilitate soluble expression, detection, or subsequent affinity purification in are widely used but may also be associated with negative consequences. Although commonly employed solubility tags have a positive influence on titers, their large molecular mass inherently results in stochiometric losses of product yield. Furthermore, the introduction of affinity tags, especially the polyhistidine tag, has been associated with undesirable changes in expression levels.

View Article and Find Full Text PDF
Article Synopsis
  • Cycle stability is crucial for preparative chromatography, with Protein A affinity resins reportedly lasting up to 200 cycles under optimized conditions.
  • Engineered alkaline-resistant Protein A resins can endure harsh cleaning cycles with 1 M NaOH, leading to fewer fouling issues and higher purification cycles.
  • The study found that mass transfer increased by up to 40% due to a change in the diffusion mechanism, highlighting a narrow range of alkaline treatment conditions that can enhance dynamic binding capacity.
View Article and Find Full Text PDF

The nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for several steps of the viral life cycle, and is abundantly expressed during infection, making it an ideal diagnostic target protein. This protein has a strong tendency for dimerization and interaction with nucleic acids. For the first time, high titers of NP were expressed in E.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focused on optimizing pH gradient systems to separate 20 different charge variants of trastuzumab after subjecting it to stress conditions over 3 weeks.
  • * The separated charge variants were analyzed further using LC-MS, and the study found no major differences in the binding properties to HER2 or other receptors between the stressed and non-stressed versions of trastuzumab.
View Article and Find Full Text PDF

Proteases serve as important tools in biotechnology and as valuable drugs or drug targets. Efficient protein engineering methods to study and modulate protease properties are thus of great interest for a plethora of applications. We established PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection), a bacterial selection system, which enables the optimization of proteases for biotechnology, therapeutics or diagnosis in a simple overnight process.

View Article and Find Full Text PDF
Article Synopsis
  • Deploying two salts in hydrophobic interaction chromatography (HIC) can enhance dynamic binding capacities of chromatographic resins, but the underlying mechanisms are not well understood.
  • This study investigates the roles of surface tension and ionic strength on binding capacities using dual salt systems and various model proteins, revealing that ionic strength is a better predictor of binding capacity.
  • The research indicates significant protein-protein interactions in these dual salt systems, affecting adsorption behavior and suggesting that higher protein interactions lead to cluster formation in the resin's cavities.
View Article and Find Full Text PDF

Background: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups.

Methods: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein.

View Article and Find Full Text PDF

Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein.

View Article and Find Full Text PDF

Different degrees of protein purity have been observed in immobilized metal affinity chromatography ranging from extremely high purity to moderate and low purity. It has been hypothesized that the host cell protein composition and the metal ligands are factors governing the purity of a protein obtained after immobilized metal affinity chromatography (IMAC). Ni nitrilotriacetic acid (NTA) has become the first choice for facile His-tagged protein purification, but alternative ligands such as iminodiacetic acid (IDA) with other immobilized metal ions such as Zn, Cu and Co are valuable options when the expected purity or binding capacity is not reached.

View Article and Find Full Text PDF

The N-terminal cleavage of fusion tags to restore the native N-terminus of recombinant proteins is a challenging task and up to today, protocols need to be optimized for different proteins individually. Within this work, we present a novel protease that was designed in-silico to yield enhanced promiscuity toward different N-terminal amino acids. Two mutations in the active-site amino acids of human Caspase-2 were determined to increase the recognition of branched amino-acids, which show only poor binding capabilities in the unmutated protease.

View Article and Find Full Text PDF

Hydrophobic interaction chromatography is a versatile method to polish antibodies. Here, we present a polishing procedure in order to obtain an ultra-pure preparation of antitumor necrosis factor (TNF) alpha IgG. Hydrophobic interaction chromatography (HIC) was used with Toyopearl® Phenyl 650M adsorbent in the presence of ammonium sulfate.

View Article and Find Full Text PDF

Glycosylation, as the most prominent posttranslational modification, is recognized as an important quality attribute of monoclonal antibodies affected by various bioprocess parameters and cellular physiology. A method of lectin-based bio-layer interferometry (LBLI) to relatively rank galactosylation and fucosylation levels was developed. For this purpose, Fc-glycosylated immunoglobulin G (IgG) was recombinantly produced with varying bioprocess conditions in 15 L bioreactor and accumulated IgG was harvested.

View Article and Find Full Text PDF

Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as stability, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal antibodies provides aggregated information about these modifications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4b9bp7bv6t4m69ossiktib938ec03bg7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once