One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCOH), methanol (CHOH), and methane (CH), can be obtained either through stepwise electrochemical reduction of CO with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest.
View Article and Find Full Text PDFParageobacillus thermoglucosidasius is a thermophilic and facultatively anaerobic microbe, which is emerging as one of the most promising thermophilic model organisms for metabolic engineering. The use of thermophilic microorganisms for industrial bioprocesses provides the advantages of increased reaction rates and reduced cooling costs for bioreactors compared to their mesophilic counterparts. Moreover, it enables starch or lignocellulose degradation and fermentation to occur at the same temperature in a Simultaneous Saccharification and Fermentation (SSF) or Consolidated Bioprocessing (CBP) approach.
View Article and Find Full Text PDFTo advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples.
View Article and Find Full Text PDFMethanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD, O or pyrroloquinoline quinone (PQQ) as an electron acceptor.
View Article and Find Full Text PDFThe construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells.
View Article and Find Full Text PDFOne-carbon (C1) compounds such as methanol, formate, and CO are alternative, sustainable microbial feedstocks for the biobased production of chemicals and fuels. In this study, we engineered the carbon metabolism of the industrially important bacterium Pseudomonas putida to modularly assimilate these three substrates through the reductive glycine pathway. First, we demonstrated the functionality of the C1-assimilation module by coupling the growth of auxotrophic strains to formate assimilation.
View Article and Find Full Text PDFIt has been known for decades that codon usage contributes to translation efficiency and hence to protein production levels. However, its role in protein synthesis is still only partly understood. This lack of understanding hampers the design of synthetic genes for efficient protein production.
View Article and Find Full Text PDFMetabolism has long been considered as a relatively stiff set of biochemical reactions. This somewhat outdated and dogmatic view has been challenged over the last years, as multiple studies exposed unprecedented plasticity of metabolism by exploring rational and evolutionary modifications within the metabolic network of cell factories. Of particular importance is the emergence of metabolic bypasses, which consist of enzymatic reaction(s) that support unnatural connections between metabolic nodes.
View Article and Find Full Text PDFSynthetic biology (SynBio) is a rapidly growing scientific discipline. In the Netherlands, various universities and companies are tackling a variety of opportunities and challenges within this field. In this perspective article, we review the current synthetic biology landscape in the Netherlands across academia, industry, politics, and society.
View Article and Find Full Text PDFIn recent years the reductive glycine pathway (rGlyP) has emerged as a promising pathway for the assimilation of formate and other sustainable C1-feedstocks for future biotechnology. It was originally proposed as an attractive "synthetic pathway" to support formatotrophic growth due to its high ATP efficiency, linear structure, and limited overlap with native pathways in most microbial hosts. Here, we present the current state of research on this pathway including breakthroughs on its engineering.
View Article and Find Full Text PDFSynthetic biology has brought about a conceptual shift in our ability to redesign microbial metabolic networks. Combining metabolic pathway-modularization with growth-coupled selection schemes is a powerful tool that enables deep rewiring of the cell factories’ biochemistry for rational bioproduction.
View Article and Find Full Text PDFRecent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives.
View Article and Find Full Text PDFHong et al. heterologously expressed the metabolic core of the reductive glycine pathway (rGlyP) as a sink for the anaerobic conversion of glycerol. This recent study concludes several reports in 2020 on the ATP-efficient, one-carbon-assimilating rGlyP.
View Article and Find Full Text PDFThe major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains.
View Article and Find Full Text PDFSix CO fixation pathways are known to operate in photoautotrophic and chemoautotrophic microorganisms. Here, we describe chemolithoautotrophic growth of the sulphate-reducing bacterium Desulfovibrio desulfuricans (strain G11) with hydrogen and sulphate as energy substrates. Genomic, transcriptomic, proteomic and metabolomic analyses reveal that D.
View Article and Find Full Text PDFUnderstanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of phosphoglycolate was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, where it is referred to as photorespiration. While receiving little attention so far, aerobic chemolithoautotrophic bacteria that operate the Calvin cycle independent of light must also recycle phosphoglycolate.
View Article and Find Full Text PDFFormate can be directly produced from CO and renewable electricity, making it a promising microbial feedstock for sustainable bioproduction. Cupriavidus necator is one of the few biotechnologically-relevant hosts that can grow on formate, but it uses the Calvin cycle, the high ATP cost of which limits biomass and product yields. Here, we redesign C.
View Article and Find Full Text PDFMethanol and formate are attractive microbial feedstocks as they can be sustainably produced from CO and renewable energy, are completely miscible, and are easy to store and transport. Here, we provide a biochemical perspective on microbial growth and bioproduction using these compounds. We show that anaerobic growth of acetogens on methanol and formate is more efficient than on H/CO or CO.
View Article and Find Full Text PDFhas been widely used as a platform microorganism for both membrane protein production and cell factory engineering. The current methods to produce membrane proteins in this organism require the induction of target gene expression and often result in unstable, low yields. Here, we present a method combining a constitutive promoter with a library of bicistronic design (BCD) elements, which enables inducer-free, tuned translation initiation for optimal protein production.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2019
Conversion of biological feedstocks into value-added chemicals is mostly performed via microbial fermentation. An emerging alternative approach is the use of cell-free systems, consisting of purified enzymes and cofactors. Unfortunately, the in vivo and in vitro research communities rarely interact, which leads to oversimplifications and exaggerations that do not permit fair comparison of the two strategies and impede synergistic interactions.
View Article and Find Full Text PDFCurr Issues Mol Biol
June 2020
One-carbon (C1) feedstocks can provide a vital link between cheap and sustainable abiotic resources and microbial bioproduction. Soluble C1 substrates, methanol and formate, could prove more suitable than gaseous feedstocks as they avoid mass transfer barriers. However, microorganisms that naturally assimilate methanol and formate are limited by a narrow product spectrum and a restricted genetic toolbox.
View Article and Find Full Text PDFThe CRISPR-Cas9 nuclease has been repurposed as a tool for gene repression (CRISPRi). This catalytically dead Cas9 (dCas9) variant inhibits transcription by blocking either initiation or elongation by the RNA polymerase complex. Conditional control of dCas9-mediated repression has been achieved with inducible promoters that regulate the expression of the dcas9 gene.
View Article and Find Full Text PDFDifferent codon optimization algorithms are available that aim at improving protein production by optimizing translation elongation. In these algorithms, it is generally not considered how the altered protein coding sequence will affect the secondary structure of the corresponding RNA transcript, particularly not the effect on the 5'-UTR structure and related ribosome binding site availability. This is a serious drawback, because the influence of codon usage on mRNA secondary structures, especially near the start of a gene, may strongly influence translation initiation.
View Article and Find Full Text PDF