Plasma membrane organization profoundly impacts cellular functionality. A well-known mechanism underlying this organization is through nanoscopic clustering of distinct lipids and proteins in membrane rafts. Despite their physiological importance, rafts remain a difficult-to-study aspect of membrane organization, in part because of the paucity of chemical tools to experimentally modulate their properties.
View Article and Find Full Text PDFResistance or tolerance to traditional antibiotics is a challenging issue in antimicrobial chemotherapy. Moreover, traditional bactericidal antibiotics kill only actively growing bacterial cells, whereas nongrowing metabolically inactive cells are tolerant to and therefore "persist" in the presence of legacy antibiotics. Here, we report that the diarylurea derivative PQ401, previously characterized as an inhibitor of the insulin-like growth factor I receptor, kills both antibiotic-resistant and nongrowing antibiotic-tolerant methicillin-resistant (MRSA) by lipid bilayer disruption.
View Article and Find Full Text PDFConventional antibiotics are not effective in treating infections caused by drug-resistant or persistent nongrowing bacteria, creating a dire need for the development of new antibiotics. We report that the small molecule nTZDpa, previously characterized as a nonthiazolidinedione peroxisome proliferator-activated receptor gamma partial agonist, kills both growing and persistent Staphylococcus aureus cells by lipid bilayer disruption. S.
View Article and Find Full Text PDFThe ganglioside GM1 is present in neuronal membranes at elevated concentrations with an asymmetric spatial distribution. It is known to generate curvature and can be expected to strongly influence the neuron morphology. To elucidate these effects, we prepared giant vesicles with GM1 predominantly present in one leaflet of the membrane, mimicking the asymmetric GM1 distribution in neuronal membranes.
View Article and Find Full Text PDFA challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required.
View Article and Find Full Text PDFThe influence of the glycolipid GM1 on the physical properties of POPC membranes was studied systematically by using different methods applied to giant and large unilamellar vesicles. The charge per GM1 molecule in the membrane was estimated from electrophoretic mobility measurements. Optical microscopy and differential scanning calorimetry were employed to construct a partial phase diagram of the GM1/POPC system.
View Article and Find Full Text PDFBackground: NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown.
Methods & Results: The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant.