A strict coordination between pro- and antioxidative molecules is needed for normal animal physiology, although their exact function and dynamics during regeneration and development remains largely unknown. Via in vivo imaging, we were able to locate and discriminate between reactive oxygen species (ROS) in real-time during different physiological stages of the highly regenerative planarian . All ROS signals were strong enough to overcome the detected autofluorescence.
View Article and Find Full Text PDFAiming to in vivo characterize the responses of pluripotent stem cells and regenerative tissues to carcinogenic stress, we employed the highly regenerative organism Schmidtea mediterranea. Its broad regenerative capacities are attributable to a large pool of pluripotent stem cells, which are considered key players in the lower vulnerability toward chemically induced carcinogenesis observed in regenerative organisms. Schmidtea mediterranea is, therefore, an ideal model to study pluripotent stem cell responses with stem cells residing in their natural environment.
View Article and Find Full Text PDFThe importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities.
View Article and Find Full Text PDFRecent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation.
View Article and Find Full Text PDFA delicate balance exists between the process of carcinogenesis and tissue regeneration. A number of malignant tumours are considered the outcome of an impaired or incomplete regeneration process, resulting in persistently dividing cells. Regeneration-competent tissues and animals are able to prevent and counteract growth abnormalities and seem to have a low vulnerability to chemical carcinogenesis.
View Article and Find Full Text PDFStem cells or undifferentiated cells can cope more easily with external stresses. To evaluate the impact of toxic compounds on stem cell dynamics in vivo, in relation to other biological responses, we use the carcinogenic element cadmium and the regenerating model organism Macrostomum lignano. Through both BrdU and anti-histone H3 immunostainings, cadmium-induced effects were investigated at different stages of the stem cell cycle.
View Article and Find Full Text PDFTo investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint.
View Article and Find Full Text PDF