Background: Copper oxide (CuO) nanomaterials are used in a wide range of industrial and commercial applications. These materials can be hazardous, especially if they are inhaled. As a result, the pulmonary effects of CuO nanomaterials have been studied in healthy subjects but limited knowledge exists today about their effects on lungs with allergic airway inflammation (AAI).
View Article and Find Full Text PDFNanosize lipid vesicles are used extensively at the interface between nanotechnology and biology, e.g., as containers for chemical reactions at minute concentrations and vehicles for targeted delivery of pharmaceuticals.
View Article and Find Full Text PDFThere is increasing evidence that certain nanoparticles (NPs) can overcome the placental barrier, raising concerns on potential adverse effects on the growing fetus. But even in the absence of placental transfer, NPs may pose a risk to proper fetal development if they interfere with the viability and functionality of the placental tissue. The effects of NPs on the human placenta are not well studied or understood, and predictive in vitro placenta models to achieve mechanistic insights on NP-placenta interactions are essentially lacking.
View Article and Find Full Text PDFInteractions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale.
View Article and Find Full Text PDFThe capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection methods as alternatives to the quenching-based assays for studying peptide-induced leakage from large unilamellar lipid vesicles. Specifically, we use fluorescence correlation spectroscopy (FCS) to study the leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles dispersed in aqueous solution, and we use confocal imaging of surface-immobilized large unilamellar lipid vesicles to investigate whether there are heterogeneities in leakage between individual vesicles.
View Article and Find Full Text PDFAllosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level.
View Article and Find Full Text PDFThe exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases.
View Article and Find Full Text PDFNanometer-scaled liposomes are used frequently for research, therapeutic, and analytical applications as carriers for water-soluble molecules. Recent technical advances allow the monitoring of single liposomes, which provides information on heterogeneous properties that were otherwise hidden due to ensemble averaging. Recent observations demonstrated that the efficiency of entrapping water-soluble molecules increases with decreasing vesicle size.
View Article and Find Full Text PDFDNA with all cytosines, thymines, or all pyrimidines of one strand substituted by fluorescently labeled analogs shows diminished solubility in aqueous media and a strong tendency to aggregation that hampers enzymatic downstream processing. In this study, immobilization of fully fluorescently labeled DNA on microarrays was shown to resolve the named problems and to enable successive DNA degradation by exonuclease III. Fluorescence correlation spectroscopy and single-molecule counting for monitoring the course of DNA hydrolysis in real time revealed the virtually processive degradation of labeled DNA that occurred at an average rate of approximately 4 nt/s.
View Article and Find Full Text PDF