Publications by authors named "Nickoleta Delivanoglou"

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation.

View Article and Find Full Text PDF

A genuine and functional lymphatic vascular system is found in the meninges that sheath the central nervous system (CNS). This unexpected (re)discovery led to a reevaluation of CNS fluid and solute drainage mechanisms, neuroimmune interactions and the involvement of meningeal lymphatics in the initiation and progression of neurological disorders. In this manuscript, we provide an overview of the development, morphology and unique functional features of meningeal lymphatics.

View Article and Find Full Text PDF

Background: Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course.

View Article and Find Full Text PDF

Background: Neural precursor cells (NPCs) located in the subventricular zone (SVZ), a well-defined NPC niche, play a crucial role in central nervous system (CNS) homeostasis. Moreover, NPCs are involved in the endogenous reparative process both in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the possibility that NPCs may be vulnerable to immune-related components may not be ruled out.

View Article and Find Full Text PDF

Dehydroepiandosterone (DHEA), the most abundant steroid in humans, affects multiple cellular functions of the endocrine, immune, and nervous systems. However, up to quite recently, no receptor has been described specifically for it, whereas most of its physiological actions have been attributed to its conversion to either androgens or estrogens. DHEA interacts and modulate a variety of membrane and intracellular neurotransmitter and steroid receptors.

View Article and Find Full Text PDF