Publications by authors named "Nickolaj J Petersen"

Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis.

View Article and Find Full Text PDF

Non-aqueous capillary electrophoresis (NACE) on microfluidic chips is still a comparatively little explored area, despite the inherent advantages of this technique and its application potential for, in particular, lipophilic compounds. A main reason is probably the fact that implementation of NACE on microchips largely precluded the use of polymeric substrate materials. Here, we report non-aqueous electrophoresis on a thiol-ene-based microfluidic chip coupled to mass spectrometry via an on-chip ESI interface.

View Article and Find Full Text PDF

A new and easy to construct sheathless capillary electrophoresis electro spray ionization mass spectrometry (CE-ESI-MS) interface was developed that offers several advantages compared to traditional liquid junction interfaces. The fabrication of the device only requires a CO laser engraver that most groups working with microfluids have access to. It only takes a few seconds to create a CO laser ablated opening in the bare-fused silica capillaries and the opening can be placed as close as a few mm from the spray tip.

View Article and Find Full Text PDF

One of the most attractive aspects of microfluidic chips is their capability of integrating several functional units into one single platform. In particular, enzymatic digestion and chemical separation are important steps in processing samples for many biochemical assays. This study presents the development and application of a free-flow electrophoresis microfluidic chip, and its upstream combination with an enzyme microreactor with immobilized pepsin in the same miniaturized platform.

View Article and Find Full Text PDF

In the present work, a new supported liquid membrane (SLM) has been developed for on-chip electromembrane extraction of acidic drugs combined with HPLC or CE, providing significantly higher stability than those reported up to date. The target analytes are five widely used non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), diclofenac (DIC), naproxen (NAX), ketoprofen (KTP) and salicylic acid (SAL). Two different microchip devices were used, both consisted basically of two poly(methyl methacrylate) (PMMA) plates with individual channels for acceptor and sample solutions, respectively, and a 25 µm thick porous polypropylene membrane impregnated with the organic solvent in between.

View Article and Find Full Text PDF

This paper reports for the first time nanoliter-scale electromembrane extraction (nanoliter-scale EME) in a microfluidic device. Six basic drug substances (model analytes) were extracted from 70 μL samples of human whole blood, plasma, or urine through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE) and into 6 nL of 10 mM formic acid as an acceptor solution. A DC potential of 15 V was applied across the SLM and served as the driving force for the extraction.

View Article and Find Full Text PDF

Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation.

View Article and Find Full Text PDF

This tutorial discusses continuous electromembrane extraction (c-EME) coupled directly to mass spectrometry (MS), and the applicability of such systems for on-line and real-time monitoring of in-vitro drug metabolism. Parent drug substances and corresponding drug metabolites are extracted from the metabolic reaction mixture, through a supported liquid membrane (SLM), and into an acceptor solution on the other side. Extraction is accomplished using an external electrical field sustained over the SLM.

View Article and Find Full Text PDF

For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques.

View Article and Find Full Text PDF

A triple-flow electromembrane extraction (EME) probe was developed and coupled directly to electrospray-ionization mass spectrometry (ESI-MS). Metabolic reaction mixtures (pH 7.4) containing drug substances and related metabolites were continuously drawn (20 μL/min) into the EME probe in one flow channel, and mixed inside the probe with 7.

View Article and Find Full Text PDF

Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position.

View Article and Find Full Text PDF

Many bioanalytical methods rely on electrophoretic separation of structurally labile and surface active biomolecules such as proteins and peptides. Often poor separation efficiency is due to surface adsorption processes leading to protein denaturation and surface fouling in the separation channel. Flexible and reliable approaches for preventing unwanted protein adsorption in separation science are thus in high demand.

View Article and Find Full Text PDF

Detection of immune responses is important in the diagnosis of many diseases. For example, the detection of circulating autoantibodies against double-stranded DNA (dsDNA) is used in the diagnosis of Systemic Lupus Erythematosus (SLE). It is, however, difficult to reach satisfactory sensitivity, specificity, and accuracy with established assays.

View Article and Find Full Text PDF

Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides.

View Article and Find Full Text PDF

The current work describes the implementation of electro membrane extraction (EME) into an autosampler for high-throughput analysis of samples by EME-LC-MS. The extraction probe was built into a luer lock adapter connected to a HTC PAL autosampler syringe. As the autosampler drew sample solution, analytes were extracted into the lumen of the extraction probe and transferred to a LC-MS system for further analysis.

View Article and Find Full Text PDF

A fully integrated and automated electromembrane extraction LC-MS (EME-LC-MS) system has been developed and characterized. Hyphenation of a flow-flow EME probe to LC-MS was accomplished by using an in-built 10-port switching valve of the LC-MS system. The 10-port switching valve decoupled the high pressure of the UHPLC-system from the low pressure required for operation of the EME-probe by automated switching between a sample extraction/analysis and a sample load position.

View Article and Find Full Text PDF

Rapid and sensitive quantification of protein based biomarkers and drugs is a substantial challenge in diagnostics and biopharmaceutical drug development. Current technologies, such as ELISA, are characterized by being slow (hours), requiring relatively large amounts of sample and being subject to cumbersome and expensive assay development. In this work a new approach for quantification based on changes in diffusivity is presented.

View Article and Find Full Text PDF

A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible.

View Article and Find Full Text PDF

Sample preparation is an essential step in any bioanalytical procedure and very often the most challenging step in method development. Most of the currently used methods require a relatively large amount of sample and are time consuming. Here, we describe a new approach based on electromembrane extraction (EME) integrated in microfluidic polymer chips.

View Article and Find Full Text PDF

The present work shows the application of the temperature-correlated mobility theory for the optimization of the separation and peak alignment of the main lignans from water extracts of traditional Chinese medicine Schisandra Chinensis Fructus as well as its prescription Yuye Decoction (Jade Fluid Decoction; YYD). This is the first application of this theory for MEKC separations, and the data presentation allows a much easier peak tracking and thereby identification of the analytes. Most interestingly, the data obtained and presented in the mobility scale at 298 K, show that Schisantherin A, which is easily mistaken as one of the analytes using traditional time scale, was actually not detected in Schisandra Chinensis Fructus and Yuye Decoction (Jade Fluid Decoction) water extracts.

View Article and Find Full Text PDF

An automated liquid-phase microextraction (LPME) device in a chip format has been developed and coupled directly to high performance liquid chromatography (HPLC). A 10-port 2-position switching valve was used to hyphenate the LPME-chip with the HPLC autosampler, and to collect the extracted analytes, which then were delivered to the HPLC column. The LPME-chip-HPLC system was completely automated and controlled by the software of the HPLC instrument.

View Article and Find Full Text PDF

A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction (incubation) chamber (37 °C). The drug-related substances were continuously extracted from the 1.0 mL metabolic reaction mixture and into the EME-probe by an electrical potential of 2.

View Article and Find Full Text PDF

The present work has for the first time described nano-electromembrane extraction (nano-EME). In nano-EME, five basic drugs substances were extracted as model analytes from 200 μL acidified sample solution, through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE), and into approximately 8 nL phosphate buffer (pH 2.7) as acceptor phase.

View Article and Find Full Text PDF

A simple data reconstruction technique in CE-UV-ESI-MS (where UV stands for ultraviolet) is presented to overcome the drift in mobilities caused by various factors compromising the reproducibility of such data, for example Joule heating effects and the variation in thermostatic control along the capillary, drift in EOF and the suction effect caused by the nebulizing gas in coaxial CE-MS interfaces. We present here a method to transform the traditional time-based electropherogram into the corresponding temperature-correlated mobility scale allowing tracking of analytes independent from capillary dimensions, electric field strengths, temperature control, and distance between the detectors. The main principle of this alignment is based on including the current in the mobility calculations and relating this to the initial electrical resistance of the buffer-filled capillary.

View Article and Find Full Text PDF

In this work, a microfluidic-chip based system for liquid-phase microextraction (LPME-chip) was developed. Sample solutions were pumped into the LPME-chip with a micro-syringe pump at a flow rate of 3-4 μL min(-1). Inside the LPME chip, the sample was in direct contact with a supported liquid membrane (SLM) composed of 0.

View Article and Find Full Text PDF